Skip to main content

On a Standardized Measure of Substrate Uniformity

  • Chapter
Phase Transitions in Surface Films

Part of the book series: NATO Advanced Study Institutes Series ((NSSB,volume 51))

  • 133 Accesses

Abstract

Thin film studies are now being carried out with a variety of relatively uniform substrates; exfoliated graphite powders and compacts, graphitized carbon black, lamellar halides, alkali halides, oxides, and others. These adsorbents, although quite uniform, are not ideal, for they have varying densities and types of imperfections. Their heterogeneity can be ignored for certain kinds of investigations, but are important in others, especially in the neighborhood of phase transitions, where the films may have divergent compressibilities. While it is obviously desirable to use the most uniform substrate in every experiment, other practical requirements usually demand a compromise, involving a less ideal adsorbent. The variety of adsorbents, coupled with the sensitivity of films to heterogeneity, creates a need for some common method for measuring and specifying the heterogeneity of every experimental adsorbent and installation. The measurement should be relatively simple to carry out and interpret, inexpensive and adaptable to all types of experimental system. It is proposed here that the vapor pressure isotherms of Kr at 77K, specifically the riser of the second atomic layer, can satisfy these requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. H. Singleton and J. D. Halsey, Jr., J. Phys. Chem. 58, 330, 1011 (1954).

    Article  Google Scholar 

  2. G. Ehrlich and F. G. Hudda, J. Chem. Phys. 30, 493 (1959).

    Article  ADS  Google Scholar 

  3. A. Thomy and X. Duval, J. Chim. Phys. Physicochim. Biol. 66, 1966 (1969); J37, 286, 1101 (1970).

    Google Scholar 

  4. T. Engel and R. Gomer, J. Chem. Phys. 52, 5572 (1970).

    Article  ADS  Google Scholar 

  5. F. A. Putnam and T. Fort, Jr., J. Phys. Chem. 79, 459 (1975).

    Article  Google Scholar 

  6. J. A. Venables, H. M. Kramer, and G. L. Price, Surf. Sci. 55, 41 (1976); 57, 782 (1976).

    Article  Google Scholar 

  7. J. Suzanne and M. Bienfait, J. Phys. (Paris) 38 Suppl. C4, 93 (1977).

    Google Scholar 

  8. M. D. Chinn and S. C. Fain, Jr., Phys. Rev. Lett. 39, 146 (1977).

    Article  ADS  Google Scholar 

  9. C. Marti, B. Croset, P. Thorel, and J. P. Coulomb, Surf. Sci. 65, 532 (1977).

    Article  ADS  Google Scholar 

  10. P. M. Horn, et al., Phys. Rev. Lett. 41, 961 (1978); P. W. Stephens, et al., Phys. Rev. Lett. 43, 47 (1979).

    Article  ADS  Google Scholar 

  11. D. M. Butler, J. A. Litzinger, G. A. Stewart, and R. B. Griffiths, Phys. Rev. Lett. 42, 1289 (1979).

    Article  ADS  Google Scholar 

  12. M. Bienfait, J. G. Dash, and J. Stoltenberg, Phys. Rev. (to be published).

    Google Scholar 

  13. Y. Larher, J. Chim. Phys. 68, 796 (1971).

    Google Scholar 

  14. T. Takaishi and M. Mohri, J. Chem. Soc. Faraday Trans. 168, 1921 (1972).

    Google Scholar 

  15. Y. Larher and D. Haranger, Surf. Sci. 39, 100 (1973).

    Article  ADS  Google Scholar 

  16. J. G. Dash, R. Ecke, J. Stoltenberg, O. E. Vilches, and O. J. Whittemore, Jr., J. Phys. Chem. 82, 450 (1978).

    Article  Google Scholar 

  17. Y. Larher, Mol. Phys. 38, 789 (1979).

    Article  ADS  Google Scholar 

  18. T. T. Chung and J. G. Dash, Surf. Sci. 66, 559 (1977).

    Article  ADS  Google Scholar 

  19. J. K. Kjems, L. Passeil, H. Taub, J. G. Dash, and A. D. Novaco, Phys. Rev. B13, 1446 (1976).

    ADS  Google Scholar 

  20. W. F. Brooks, Brookhaven Informal Report, BNL 22617 (1967) (unpublished).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Dash, J.G. (1980). On a Standardized Measure of Substrate Uniformity. In: Dash, J.G., Ruvalds, J. (eds) Phase Transitions in Surface Films. NATO Advanced Study Institutes Series, vol 51. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3057-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3057-8_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3059-2

  • Online ISBN: 978-1-4613-3057-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics