Skip to main content

Studies of Literally Two-Dimensional Magnets of Manganese Stearate

  • Chapter

Part of the book series: NATO Advanced Study Institutes Series ((NSSB,volume 51))

Abstract

Phase transitions are fascinating physical phenomena. It is a remarkable fact that presumably short-range interactions between atoms can give rise to long-range order among them. The detailed explanation of such effects is a challenging problem in statistical mechanics. In order to simplify the problem and to provide test cases for theoretical methods, theoreticians have concentrated on model systems with low dimensionality; summations over one dimensional (1-d) or two-dimensional (2-d) spaces are usually easier than for 3-d. It has turned out that theories predict that low-dimensional systems will have special properties, rather unlike 3-d systems in many cases. The hope is that these theories can also be applied to the 3-d world. But, considering the simplifications of theories and the complications of Nature, one wonders if the theories are adequate. It seems that theorists have chosen to consider 1-d and 2-d models in order to make their work easier, but this has placed experimenters in the awkward position of trying to test the theories in a world that seems stubbornly three dimensional. Other lectures at this school have shown that it has proved possible to produce and study systems that closely resemble two-dimensional objects, in the form of films of atoms or molecules adsorbed on surfaces.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Theory is extensively reviewed in the series Phase Transitions and Critical Phenomena Edited by C. Domb and M. S. Green. See also Ref. 6, and Proceedings of Fermi Schools, Courses LI (1971), LIX (1976), North-Holland.

    Google Scholar 

  2. M. E. Fisher in Essays in Physics Vol. 4:43, (1972) Academic Press, R. B. Griffiths, Phys. Rev. Lett. 24: 1479 (1970).

    Google Scholar 

  3. M. E. Fisher, S. K. Ma, B. G. Nickel, Phys. Rev. Lett. 29:917 (1972).

    Article  ADS  Google Scholar 

  4. L. Onsager, Phys. Rev. 65:117 (1944).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. N. D. Mermin, and H. Wagner, Phys. Rev. Lett. 17:1133 (1966).

    Article  ADS  Google Scholar 

  6. J. M. Kosterlitz and D. J. Thouless, Prog. in Low Temp. Phys. VIIB, p. 371 Ed. D. F. Brewer, North-Holland, (1978).

    Google Scholar 

  7. C. Herring and C. Kittel, Phys. Rev. 81:869 (1951).

    Article  ADS  MATH  Google Scholar 

  8. M. E. Lines, J. Phys. Chem. Solids 31:101 (1970).

    Article  ADS  Google Scholar 

  9. Names are withheld to protect the guilty.

    Google Scholar 

  10. F. Bloch, Z. Phys. 61:206 (1930).

    Article  ADS  Google Scholar 

  11. B. E. Argyle, S. H. Charap, and E. W. Pugh, Phys. Rev. 132:2051 (1963).

    Article  ADS  Google Scholar 

  12. H. Ikeda, M. T. Hutchings and M. Suzuki, J. Phys. C, 11:L 359 (1978). For a review of quasi 2-d experiments, see L. J. de Jongh and A. R. Miedema, Adv. Phys. 23:1 (1974).

    ADS  Google Scholar 

  13. J. P. McTague and M. Neilsen, Phys. Rev. Lett. 37:596 (1976).

    Article  ADS  Google Scholar 

  14. S. Gregory, Phys. Rev. Lett. 40:723 (1978).

    Article  ADS  Google Scholar 

  15. O. Vilches, unpublished results presented at this school.

    Google Scholar 

  16. V. D. Borman, B. I. Buttsev, V. A. Konakov, B. I. Nikolaev, and V. I. Troyan, JETP Lett. 27:527 (1978).

    ADS  Google Scholar 

  17. Reviewed by G. L. Gaines, Insoluble Monolayers at Liquid-Gas Interfaces Interscience, New York (1966).

    Google Scholar 

  18. I. Langmuir, J. Am. Chem. Soc. 39:1848 (1917).

    Article  Google Scholar 

  19. K. B. Blodgett, J. Am. Chem. Soc. 57:1007 (1935).

    Article  Google Scholar 

  20. J. Messier and G. Marc, J. de Physique 32:799 (1971). cf. also P. A. Chollet, J. Phys. C 7:4127 (1974).

    Article  Google Scholar 

  21. D. W. Deamer, D. W. Meek and D. G. Cornwell, J. of Lipid Res. 8:255 (1967).

    Google Scholar 

  22. G. A. Wolstenholme and J. H. Schulman, Proc. Farad. Soc. 46:475 (1950).

    Article  Google Scholar 

  23. C. J. Ballhausen, Introduction to Ligand Field Theory, McGraw-Hill, New York, 1962.

    MATH  Google Scholar 

  24. J. H. van Vleck, Phys. Rev. 45:405 (1934).

    Google Scholar 

  25. S. P. Kowalczyk, L. Ley, R. A. Pollak, F. R. McFeely and D. A. Shirley, Phys. Rev. B7:4009 (1973).

    ADS  Google Scholar 

  26. M. Pomerantz and R. A. Pollak, Chem. Phys. Lett., 31:602 (1975).

    Article  ADS  Google Scholar 

  27. M. Avram and G. D. Mateescu, Infra Red Spectroscopy, Wiley Interscience, (1972).

    Google Scholar 

  28. B. Ellis and H. Pyszora, Nature 181:181 (1958).

    Article  ADS  Google Scholar 

  29. M. Pomerantz, S. Herd and E. E. Simonyi, Bull. Am. Phys. Soc. 23:431 (1978), and to be published.

    Google Scholar 

  30. N. J. Harrick, J. Phys. Chem. 64:1110 (1960), Internal Reflection Spectroscopy, Wiley and Sons, N. Y., (1967).

    Article  Google Scholar 

  31. A. Hjortsberg, W. P. Chen, E. Burstein and M. Pomerantz, Optics Comm. 25:65 (1978).

    Article  ADS  Google Scholar 

  32. J. F. Stephens and C. Tuck-Lee, Appl. Crystallogr. 2:1 (1969). Note that Figs. 4 and 6 are switched.

    Article  Google Scholar 

  33. J. Kirtley and M. Pomerantz (unpublished).

    Google Scholar 

  34. F. Kopp, U. P. Fringeli, K. Mühlethaler and H. H. Günthard, Biophys. Struct. Mechanism 1:75 (1975).

    Article  Google Scholar 

  35. M. Pomerantz, F. Dacol and A. Segmüller, Phys. Rev. Lett. 40:246 (1978).

    Article  ADS  Google Scholar 

  36. D. C. Bisset and J. Ibal, Proc. Phys. Soc. London, Sect. A 67:315 (1954).

    Article  ADS  Google Scholar 

  37. M. Pomerantz and A. Segmüller, Thin Solid Films (to be published).

    Google Scholar 

  38. R. M. Nicklow, M. Pomerantz, and A. Segmüller, Bull. Am. Phys. Soc. 24:488 (1979).

    Google Scholar 

  39. ESR in quasi 2-d is reviewed by P. M. Richards, in Proceedings of the International School of Physics “Enrico Fermi”, Course LIX, (1976).

    Google Scholar 

  40. H. P. Boesch, U. Schmocker, F. Waldner, K. Emerson, and J. E. Drumheller, Phys. Lett. 36A. 461 (1971).

    ADS  Google Scholar 

  41. P. M. Richards and M. Salamon, Phys. Rev. B 9:32 (1974).

    Article  ADS  Google Scholar 

  42. M. Pomerantz, Solid State Comm., 27:1413 (1978).

    Article  ADS  Google Scholar 

  43. J. Axe, private communications.

    Google Scholar 

  44. M. Pomerantz and A. Aviram, Solid State Comm., 20:9 (1976).

    Article  ADS  Google Scholar 

  45. T. Haseda, H. Yamakawa, M. Ishizuka, Y. Okuda, T. Kubota, M. Hata, and K. Amaya, Solid State Comm. 24:599 (1977). Also N. Giordano and D. Prober, private communications.

    Article  ADS  Google Scholar 

  46. C. Kittel, J. Phys. Rad., 12:149 (1951).

    Article  Google Scholar 

  47. I. Dzyaloshinsky, J. Phys. Chem. Solids 4:241 (1958).

    Article  ADS  Google Scholar 

  48. T. Moriya, Magnetism: 1, 85 Ed. Rado and Suhl, Academic Press. (1963).

    Google Scholar 

  49. A. S. Borovik-Romanov in Elements of Theoretical Magnetism, Ed. S. Krupicka, and J. Sternberk, p. 193, Iliffe Books Ltd. (London) (1968).

    Google Scholar 

  50. K. Saiki, J. Phys. Soc. Japan 33:1284 (1972).

    Article  ADS  Google Scholar 

  51. H. Yoshioka and K. Saiki, J. Phys. Soc. Japan 33:1566 (1972).

    Article  ADS  Google Scholar 

  52. The APL/360 program was written by R. Evans, assisted by R. Linn.

    Google Scholar 

  53. A. S. Borovik-Romanov, N. M. Kreines, and L. A. Prozorova, Sov. Phys. JETP 18:46 (1964).

    Google Scholar 

  54. M. Pomerantz and A. Taranko, unpublished.

    Google Scholar 

  55. F. Ferrieu, private communication.

    Google Scholar 

  56. L. Neel, Rev. Mod. Phys. 25:58 (1953).

    Article  ADS  Google Scholar 

  57. Y. Imry, Ann. of Phys. 51:1 (1969) and references therein.

    Article  ADS  Google Scholar 

  58. D. Goodstein and S. K. Ma, semi-private communications.

    Google Scholar 

  59. R. A. Pelcovits and D. R. Nelson, Phys. Lett. 57A:23 (1976).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Pomerantz, M. (1980). Studies of Literally Two-Dimensional Magnets of Manganese Stearate. In: Dash, J.G., Ruvalds, J. (eds) Phase Transitions in Surface Films. NATO Advanced Study Institutes Series, vol 51. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3057-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3057-8_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3059-2

  • Online ISBN: 978-1-4613-3057-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics