Advertisement

Crystal Chemistry of the Europium Pnictides

  • F. Hulliger
  • R. Schmelczer

Abstract

Europium occurs in the pnictides with oxidation number two and three, depending on concentration and electronegativity of the anions. The crystal chemistry of trivalent Eu resembles that of the normal rare-earth elements, whereas the divalent Eu compounds are closely related to their alkaline-earth analogs. The alkaline earths as well as divalent Eu have a relatively low electronegativity. Nonmetallic properties are therefore most likely to occur in the phosphides and arsenides, possibly also in the antimonides. The discussion of the crystal chemistry of these pnictides thus will turn out to be an illustration of the Mooser — Pearson rule (1,2). This rule correlates the electronic properties of a compound to its crystal structure or short-range order. Nonmetallic properties require that in an idealized crystal (i.e. a crystal without the unavoidable imperfections) at T=0 the valence electrons occupy all states in some low-lying energy bands (valence band) while the next higher available states (in the conduction band) are well separated energetically. The generation of free charge carriers therefore requires an activation energy. From a chemical point of view this means that in a nonmetallic compound all the chemical bonds have to be saturated while non-bonding electrons (such as 4f-electrons) have to be localized on the ions.

Keywords

Crystal Chemistry Chain Fragment Europium Compound Bond Saturation Anion Bond 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Mooser and W. B. Pearson, “The chemical bond in semiconductors”, Progr. Semicond. 5: 103 (1960).Google Scholar
  2. 2.
    E. Mooser, “The electrical properties of the solids, a problem of the chemical bond”, Chimia 23: 169 (1969).Google Scholar
  3. 3.
    Yu Wang, L. D. Calvert, E. J. Gabe and J.B. Taylor, “Structure of two forms of europium arsenide Eu5As3”, Acta Cryst. B34: 2281 (1978).Google Scholar
  4. 4.
    J. B. Taylor, L.D. Calvert, T. Utsunomiya, Yu Wang, “Rare-earth arsenides: The metal-rich europium arsenides”, J. Less-Common Met. 57: 39 (1978).CrossRefGoogle Scholar
  5. 5.
    J. B. Taylor, L.D. Calvert and Yu Wang, “Powder data for some new europium arsenides”, J. Appl. Cryst. 10: 492 (1977).CrossRefGoogle Scholar
  6. 6.
    F. Hulliger and 0. Vogt, “New ferromagnetic europium compounds”, Solid State Commun. 8: 771 (1970).CrossRefGoogle Scholar
  7. 7.
    F. Hulliger and R. Schmelczer, unpublished.Google Scholar
  8. 8.
    M. Wittmann (Stuttgart), private commun. (1979).Google Scholar
  9. 9.
    F. Hulliger, “Eu4As3, a new trigonal anti-Th3P4 type compound”, Mat. Res. Bull. 14: 33 (1979). 158Google Scholar
  10. 10.
    R. J. Gambino, “Rare-earth-Sb and -Bi compounds with the Gd4Bi3 (anti-Th3P4) structure”, J. Less-Common Met. 12; 344 (1967).CrossRefGoogle Scholar
  11. 11.
    Yu Wang, L.D. Calvert, E.J. Gabe and J.B. Taylor, “The crystal structure of Eu5AS4: A more symmetrical version of the Sm5Ge4- type structure”, Acta Cryst. B34: 1962 (1978).CrossRefGoogle Scholar
  12. 12.
    K. E. Mironov, G.P. Brygalina and V.N. Ikorskii, “Magnetism of europium phosphides”, Proc. 11th Rare Earth Res. Conf., Traverse City:105 (1974).Google Scholar
  13. 13.
    S. Ono, F.L. Hui, J.G. Despault, L.D. Calvert and J.B. Taylor, “Rare-earth pnictides: The arsenic-rich europium arsenides”, J. Less-Common Met. 25: 287 (1971).CrossRefGoogle Scholar
  14. 14.
    A. Iandelli and E. Franceschi, “On the crystal structure of the compounds CaP, SrP, CaAs, SrAs and EuAs”, J. Less-Common Met. 30: 211 (1973).CrossRefGoogle Scholar
  15. 15.
    M. Smart, L.D. Calvert and J.B. Taylor, private communic. (1977).Google Scholar
  16. 16.
    F. Hulliger, “Pnictides”, in: Hdb. Phys. Chem. Rare Earths, Vol. I V, K.A. Gschneidner and L. Eyring, eds., North-Holland (1979).Google Scholar
  17. 17.
    G. Chapuis, F. Hulliger and R. Schmelczer, “The crystal structure and some properties of Eu2Sb3”, J. Solid State Chem. (in press).Google Scholar
  18. 18.
    F. Hulliger and R. Schmelczer, “Crystal structure and antiferromagnetism of EuSb2”, J. Solid State Chem. 26: 389 (1978).CrossRefGoogle Scholar
  19. 19.
    H. G. v. Schnering, W. Wichelhaus and M. Wittmann, “New polyphosphides of the rare-earth metals”, 5th Conf. Trans. Elem. Compds., Uppsala, PII 68 (1976).Google Scholar
  20. 20.
    H. G. V. Schnering, “Catenation of phosphorus atoms”, in: “Homoatomic rings, chains and macromolecules of main-group elements”, A.L. Rheingold, ed., Elsevier, Amsterdam (1977).Google Scholar
  21. 21.
    J.F. Brice and A. Courtois, “On the existence of EuAs3 and SrAs3”, C.R. Acad. Sci. Paris 283C: 479 (1976).Google Scholar
  22. 22.
    B. Kempf, B. Elschner, P. Spitzli and 0. Fischer, “Superconductivity and magnetic ordering in Bi3Sr1Eux”, Phys. Rev. B17: 2163 (1978).CrossRefGoogle Scholar
  23. 23.
    F. Hulliger, “On the usefulness of bond considerations in phase characterization: The 2:1 alkaline-earth pnictides”, Z. Krist. (in press).Google Scholar
  24. 24.
    F. Hulliger, “New ternary anti-Th3P4-type europium compounds”, Mat. Res. Bull. 14: 259 (1979).CrossRefGoogle Scholar
  25. 25.
    M. Wittmann, W. Schmettow, D. Sommer, W. Bauhofer and H.G. v. Schnering, “Phosphides, arsenides and antimonides of divalent europium”, VI. Int. Conf. Solid Compds. Trans. Elements, Stuttgart 1979, PO III/20.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • F. Hulliger
    • 1
  • R. Schmelczer
    • 2
  1. 1.Solid State Physics Laboratory ETHZürichSwitzerland
  2. 2.Crystallogr. Institute, UniversityLausanneSwitzerland

Personalised recommendations