Hydrogenic Mesomolecules and Muon Catalyzed Fusion

  • Johann Rafelski
Part of the Ettore Majorana International Science Series book series (volume 4)


With respect to many atomic and molecular processes the lifetime of the free muon, τμ = 2.20×10−6 sec, is sufficiently long to consider it as a stable object. So the possibility arises that mesomolecules of heavy hydrogen isotopes are formed. Such a mesomolecule is, up to recoil corrections, a scaled down model of the usual one-electron hydrogen molecule, H+ 2, with the scaling factor being the ratio of muon to electron mass, 206.8. In particular, the hydrogenic isotopes are only about 1Ä/206.8 = 500 fm apart. Consequently, the probability for spontaneous fusion is appreciable especially for fusion reaction channels governed by strong interactions. This is in particular the case for the dd and dt mesomolecules.


Hydrogen Isotope Fusion Product Vacuum Polarization Liquid Hydrogen Sticking Probability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L.W. Alvarez, H. Bradner, P.S. Crawford, Jr., J.A. Crawford, P. Palk-Vairant, M.L. Good, J.D. Gow, A.H. Rosenfeld, P. Solmitz, M.L. Stevenson, H.K. Ticho and R.D. Tripp, Phys.Rev. 105:1127 (l957).Google Scholar
  2. 2.
    P.C. Prank, Nature 160:525 (l947).ADSCrossRefGoogle Scholar
  3. 3.
    A.D. Sakharov, Report of the Physics Institute, Academy of Sciences (l948).Google Scholar
  4. 4.
    Ya.B. Zel’dovich, Dokl.Akad.Nauk SSR 95:493 (1954).Google Scholar
  5. 5.
    J.D. Jackson, Phys.Rev. 106: 330 (1957).ADSCrossRefGoogle Scholar
  6. 6.
    Ya.B. ZelTdovich and S.S. Gershtein, [Soviet Uspekhi 3:593 (1961)], Usp.Piz.Nauk 71: 581 (1960).ADSCrossRefGoogle Scholar
  7. 7.
    V.M. Bystritsky, V.P. Dzhelepov, A.I. Rudenko, V.M. Suvorov, V.V. Pilchenkov, N.N. Khovanskii and B.A. Khomenko, “Mesons in Matter”, Proc.Intern.Symp. on Mesonic Chemistry and Mesic Molecular Process in Matter, Dubna (1977).Google Scholar
  8. 8.
    E.A. Vesman, Zh.Eksp.Theor.Piz.Pisma 5:113 (1967); [Soviet Phys.JETP Letters 5:91 (1967)].Google Scholar
  9. 9.
    S.S. Gerstein and L.I. Ponomarev, Phys. Letters 72B:80 (1977); Erratum 76B: 664 (1978).Google Scholar
  10. 10.
    S.I. Vinitsky, L.I. Ponomarev, I.V. Puzynin, T.P. Puzynina, L.N. Somov and M.P. Paifman, “Resonance Formation of Hydrogen μ Mesomolecules”, Dubna Preprint P4-10929 (1977); Zh.Eksp.Teor.Piz. 74 (l978).Google Scholar
  11. 11.
    W.P.S. Tan Nature 263:656 (1976). E.P. Hincks, M.K. Sundaresan, P.J.S. Watson, Nature 269: 581+ (1977).ADSCrossRefGoogle Scholar
  12. 12.
    S.S. Gershtein and L.I. Ponomarev, “Mesomolecular Processes Induced by μ- and π- Mesons”, in Myon Physics III -Chemistry and Solids, V.W. Hughes and C.S. Wu Editors, Academic Press, New York (1975), p. 141.Google Scholar
  13. 13.
    L.I. Ponomarev, “μ Atomic and μ Molecular Processes in Hydrogen Isotope Mixtures”, SIN Preprint PR-77-011 (1977).Google Scholar
  14. 14.
    S.I. Vinitsky, L.I. Ponomarev, I.V. Puzynin, T.P. Puzynina and L.N. Somov, “The Calculation of the Energy Levels of the Hydrogen Isotope μ Molecules in the Adiabatic Representation”, Dubna Preprint P4 - 10336 (1976).Google Scholar
  15. 15.
    V.S. Melezhik and L.I. Ponomarev, Phys.Letters 77B: 217 (1978).ADSGoogle Scholar
  16. 16.
    A.M. Ronn, “Laser Chemistry”, in the May 1979 issue of “Scientific American”, p. 103. See also references p. 150.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Johann Rafelski
    • 1
  1. 1.Theoretical Physics DivisionCERNGenève 23Switzerland

Personalised recommendations