L.A.M. Technique: Systematic Generation of Logical Structures in Systems Reliability Studies

  • Giuseppe Reina
  • Giuseppe Squellati


A new approach for the reliability analysis of coherent and non-coherent systems is presented with regard to the problem of the systematic generation of failure logical structures. In particular, this methodology allows us to derive the logical behaviour of the system by means of the physical behaviour of its components.

To this end, suitable component failure-dependent analytical models are constructed to describe the component behaviour under normal and failure conditions. These models constitute, in their whole, a set of parametric equations describing the normal and failure behaviour of the whole system.

Starting from the considered component failure events, all the possible configurations of the system hypothetical failure structures are automatically generated in a controlled way. Now, by definition, to each given logical structure it corresponds a specific set of equations. Thus, the comparison of the corresponding numerical solution with analytically defined critical TOP conditions allows TOP and/or NON-TOP sets of events to be identified.

An application to the study of a simplified mixing circuit of an ethylene oxide production plant is presented.


Control Valve Oxygen Flow Rate Incremental Variable Fault Tree Analysis Stop Valve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. G. Bennets, On the analysis of fault trees, IEEE Trans, on Rel., R-24/3 (1975).Google Scholar
  2. 2.
    Z. W. Birnbaum, Theory of Reliability for Coherent Structures, Report 41, Dept. of Mathematics, University of Washington, Seattle, (1965).Google Scholar
  3. 3.
    D. B. Brown, A computerized algorithm for determining the reliability of redundant configurations, IEEE Trans, on Rel., R-20, 121: 124 (1971).Google Scholar
  4. 4.
    A. Carnino, Safety Analysis Using Fault-Trees, NATO Advanced Study Inst, on Generic Techniques of System Reliability Assessment, Nordhoff Publishing Company (1974).Google Scholar
  5. 5.
    A. G. Colombo, Cadi - A Computer Code for System Availability and Reliability Evaluation, Report EUR 49400 (1973).Google Scholar
  6. 6.
    A. G. Colombo, G. Volta, Sensitivity Analysis in Systems Reliability Evaluation, J.R.C. Annual Report, Ispra (1973).Google Scholar
  7. 7.
    A. G. Colombo, G. Volta, Multistep Reliability Analysis and Optimization of Complex Systems, Proc. of the OECD-NEA Specialist Meeting on Reliability, Liverpool (1974).Google Scholar
  8. 8.
    J. B. Fussell, Fault tree analysis: concepts and techniques, NATO Advanced Study Inst, on Generic Techniques of System Reliability Assessment, Nordhoff Publishing Company (1974).Google Scholar
  9. 9.
    J. B. Fussell, Synthetic tree model: A formal methodology for fault tree construction, Aerojet Nuclear Report ANCR 01098 (1973).Google Scholar
  10. 10.
    J. B. Fussell, A Formal Methodology for Fault Tree Construction, Nuc. Sc. and Eng., 52 (1973).Google Scholar
  11. 11.
    J. B. Fussell, W. E. Vesely, A New Methodology for Obtaining Cut Sets for Fault Trees, Trans. Am. Nucl. Soc., 15 (1972).Google Scholar
  12. 12.
    J. B. Fussell, G. J. Powers, R.G. Bennetts, Fault Trees: A State of the Art Discussion, IEEE Trans, on Rel. R-23/1 (1974).Google Scholar
  13. 13.
    S. L. Gandhi, K. Inoue, E.J. Henley, Computer Aided System Reliability Analysis and Optimization, Proc. of the IFIP Working Conference on Principles of Computer Aided Design, Eindoven (1972).Google Scholar
  14. 14.
    S. Garribba, G. Reina, G. Volta, Repair Processes: Fundamental and Computation, EUR 5232e Ispra (1974).Google Scholar
  15. 15.
    S. Garribba, G. Reina, G. Volta, Availability of Repairable Units when Failure and Restoration Rates Age in Real Time, IEEE Trans, on Rel., R-25 (1976).Google Scholar
  16. 16.
    S. Garribba, P. Mussio, F. Naldi, G. Reina, Determinazione Diretta degli Insiemi Minimi di taglio di Alberi Logici, CESNEF IN-006 (1974).Google Scholar
  17. 17.
    S. Garribba, P. Mussio, F. Naldi, G. Reina, G. Volta, Efficient Construction of Minimal Cut Sets from Fault Trees, IEEE Trans, on Rei. R-26/2 (1977).Google Scholar
  18. 18.
    S. Garribba, P. Mussio, F. Naldi, G. Reina, G. Volta, Dicomics: An Algorithm for Direct Computation of Minimal Cut Sets of Fault Trees, EUR 5481e, Ispra (1976).Google Scholar
  19. 19.
    S. Garribba, G. Reina, Fault Tree Sensitivity Analysis for Reliability Calculation in Nuclear Power Plants, IAEA RC 1651/RB (1976).Google Scholar
  20. 20.
    B. J. Garrick, Principles of Unified Systems Safety Analysis, Nucl. Eng. and Des., 13, 245: 321 (1974).Google Scholar
  21. 21.
    W. Y. Gateley, D.W. Stoddard, R. L. Williams, GO: A Computer Program for Reliability Analysis of Complex Systems, Kaman Sciences Corporation, Colorado Springs, KN-67-704(R) (1968).Google Scholar
  22. 22.
    D. F. Haasl, Advanced Concept in Fault Tree Analysis, System Safety Symposium (available from the University of Washington Library), Seattle (1965).Google Scholar
  23. 23.
    F. J. Henley, R.A. Williams, Graph Theory in Modern Engineering, Academic Press, New York (1973).Google Scholar
  24. 24.
    R. B. Hurley, Probability maps, IEEE Trans, on Rei., R-12, 39: 44 (1963).Google Scholar
  25. 25.
    B. V. Koen, Méthodes Nouvelles pour l’Evalutation de la Fiabilité: Reconnaissance des Formes, CEA-R-4368 (1972).Google Scholar
  26. 26.
    H. E. Kongso, REDIS: a Computer Program for System Reliability Analysis by Direct Simulation, International Symposium on Reliability of Nuclear Power Plants, Innsbruck, IAEA- SM-195/17 (1975).Google Scholar
  27. 27.
    H. E. Lambert, Systems Safety Analysis and Fault Tree Analysis, UCID-16238 (available from the Lawrence Livermore Laboratories, Livermore, Calif. ) (1973).Google Scholar
  28. 28.
    P. M. Lin, G. E. Alderson, Symbolic Network Functions by a Single Path Finding Algorithm, Proc. 7th Allerton Conf. on Circuits and Systems, 196:205, Univ. of Illinois, Urbana (1969).Google Scholar
  29. 29.
    P. M. Lin, B. J. Leon, T. C. Huang, A New Algorithm for Symbolic System Reliability Analysis, IEEE Trans, on Rei., R-25/1 (1976).Google Scholar
  30. 30.
    C. W. Mcknight, Automatica Reliability Mathematical Model, North American Aviation, Downey California, NA 66 838 (1966).Google Scholar
  31. 31.
    K. B. Misra, An Algorithm for the Reliability Evaluation of Redundant Networks, IEEE Trans. on Rel., R-19, 146: 151 (1970).Google Scholar
  32. 32.
    D. S. Nielsen, O. Platz, B. Runge, A Cause-Consequence Chart of a Redundant Protection System, IEEE Trans, on Rel. R-24, 8: 13 (1975).Google Scholar
  33. 33.
    D. S. Nielsen, The Cause-Consequence Diagram Method as a Basis for Quantitative Reliability Analysis, ENEA/CREST Meeting on Applicability of Quantitative Reliability Analysis of Complex Systems and Nuclear Plants in its Relation to Safety, Munich (1971).Google Scholar
  34. 34.
    D. S. Nielsen, Use of Cause-Consequence Charts in Practical Systems Analysis, Conference on Rel. and Fault Tree Analysis, Berkeley, California (1974).Google Scholar
  35. 35.
    P. K. Pande, Computerized Fault Tree Analysis: TREEL and MICSUP, Operation Research Center, Univ. of California, Berkeley, ORC 75 - 3 (1975).Google Scholar
  36. 36.
    E. Phibbs, S. H. Kuwamoto, An Efficient Map Method for Processing Multistate Logic Trees, IEEE Trans, on Rel., R-21, 93: 98 (1972).Google Scholar
  37. 37.
    E. Phibbs, S. H. Kuwamoto, Fault Tree Analysis, IEEE Trans, on Rel., R-23, 226 (1974).Google Scholar
  38. 38.
    G. J. Powers, S. A. Lapp, Quantitative Safety Assessment of Chemical Processes, U.S.-Japan Joint Seminar on Application of Process System Engineering to Chemical Technology Assessment, Kyoto, Japan, (1975).Google Scholar
  39. 39.
    G. J. Powers, F.C. Tompkins Jr., Fault Tree Synthesis for Chemical Processes, AICHE Journal, 20 /2, 376 (1974).CrossRefGoogle Scholar
  40. 40.
    G. J. Powers, F. C. Tompkins Jr., A Synthesis Strategy for Fault Trees in Chemical Processing Systems: Loss Prevention, Chem. Eng. Progress Techn. Manual, 8, AICHE, New York (1974).Google Scholar
  41. 41.
    G. J. Powers, F. C. Tompkins Jr., Computer Aided Synthesis of Fault Trees for Complex Processing System, Proc. NATO Advanced Study Inst, on Systems Reliability, Liverpool (1973).Google Scholar
  42. 42.
    G. Reina, Sul problema della descrizione e della rappresentazione di un sistema: Approccio logico analitico per la costruzione di alberi degli eventi e fault trees, Proc. of the ANIPLA Meeting on Reliability, Milan (1977).Google Scholar
  43. 43.
    G. Reina, G. Squellati, LAM: A New Logical Analitical Methodology for Synthetic System Representation, Institute on Safety and Risk Assessment in Chemical Plants, Sogesta, Urbino, Italy (1978).Google Scholar
  44. 44.
    G. REINA, Codice DSC per l’analisi probabilistica di Sistemi Complessi, ARS RT 75/19 (1974).Google Scholar
  45. 45.
    E. T. Rumble, F. L. Leverenz, R.C. Erdmann, Generalized Fault Tree Analysis for Reactor Safety, EPRI 217-2-2, Palo Alto (1975).Google Scholar
  46. 46.
    S. L. Salem, G. E. Apostolakis, D. Okrent, A Computer-Oriented Approach to Fault-Tree Construction, EPRI NP-288, Palo Alto (1976).Google Scholar
  47. 47.
    S. L. Salem, G. E. Apostolakis, D. Okrent, A New Methodology for the Computer-Aided Construction of Fault Trees, Annals of Nuclear Energy, 4, 417: 433 (1977).Google Scholar
  48. 48.
    S. N. Semanderes, ELRAFT: A Computer Program for the Efficient Logic Reduction Analysis of Fault Trees, IEEE Trans, on Nucl. Sc., NS-18/1, 481: 487 (1971).Google Scholar
  49. 49.
    R. J. Shroeder, Fault Trees for Reliability Analysis, R 70-15078 ASQC 821:844, Proc. of the Annual Symposium on Rel., Los Angeles (1970).Google Scholar
  50. 50.
    J. R. Taylor, Sequential Effects in Failure Mode Analysis, Conference on Rel. and Fault Tree Analysis, Berkeley (1974).Google Scholar
  51. 51.
    J. R. Taylor, A Semiautomatic Method for Qualitative Failure Mode Analysis, CSNI Specialist Meeting on the Development and Application of Rel. Tech. to Nuclear Plants, Riso M1707 (1974).Google Scholar
  52. 52.
    J. R. Taylor, E. Hollo, Algorithms and Programs for Consequence Diagram and Fault Trees Construction, Riso M1907 (1977).Google Scholar
  53. 53.
    W. J. van Slyke, D. E. Griffing, ALLCUTS: A Fast Comprehensive Fault Tree Analysis Code, Atlantic Richfield Hanford Company, Richland, Washington, ARH-ST-112 (1975).Google Scholar
  54. 54.
    W. E. Vesely, A Time-Dependent Methodology for Fault Tree Evaluation, Nuc. Eng. and Des., 13 (1970).Google Scholar
  55. 55.
    W. E. Vesely, R. E. Narum, PREP and KITT: Computer Codes for the Automatic Evaluation of a Fault Tree, Idaho Nuclear Report N-1349 (1970).Google Scholar
  56. 56.
    O. Wing, P. Demetriou, Analysis of Probabilistic Network, IEEE Trans. Comm. Tech., COM-12, 38: 40 (1964).Google Scholar
  57. 57.
    E. R. Woodcock, The Calculation of Reliability of Systems: The Program NOTED, UKAEA Authority Health and Safety Branch, Risley, Warrington, England, AHSB (S) R 153 (1971).Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Giuseppe Reina
    • 1
  • Giuseppe Squellati
    • 2
  1. 1.Dept. of Biomathematics Inst. of PharmacologyUniversity of MilanMilanItaly
  2. 2.ARS S.p.A.MilanItaly

Personalised recommendations