Enzyme Technology: Potential Benefits of Biosaline Organisms

  • Robert W. Coughlin
  • Oskar R. Zaborsky
Part of the Environmental Science Research book series (ESRH, volume 14)

Abstract

A biosaline environment exists in many parts of the world where enzyme technology has not yet begun to flourish. Accordingly, there is little information available on the effects of the environmental conditions of high temperature and salinity on specific enzymatic processes of industrial importance or on the specific production of the animals, higher plants or microorganisms which presently serve as sources of enzymes. Up to now, it seems that industrialists have not sought and perhaps have avoided the practice of enzyme technology under biosaline conditions.

Keywords

Cellulose Surfactant Corn Bacillus Styrene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Wiseman, Process Biochem. 8, 14 (1973).Google Scholar
  2. 2.
    O. R. Zaborsky, in Enzyme Engineering (E.K. Pye and L.B. Wingard, Jr., eds.) Vol. 2,115, Plenum, New York (1974).Google Scholar
  3. 3.
    W. H. Baricos, R.P. Chambers and W. Cohen, Enzyme Technology Digest 4, 39 (1975).Google Scholar
  4. 4.
    G. M. Whitesides, in Techniques of Chemistry, Applications of Biochemical Systems in Organic Chemistry, Part II, ( J.B. Jones, C.J. Sih, D. Periman, eds.), 901, Wiley, New York (1976).Google Scholar
  5. 5.
    K.J. Skinner, Chem. Eng. News 53 (Aug. 18), 22 (1975).CrossRefGoogle Scholar
  6. 6.
    B. Wolnak Associates, Present and Future Technological and Commerical Status of Enzymes NTIS: PB-219 636 U.S. Dept. of Commerce (1972).Google Scholar
  7. 7.
    W. H. Mermelstein, Food Technology, June, 20 (1975).Google Scholar
  8. 8.
    M. D. Rosenzweig, Chem. Eng. (Sept. 27 ), 54 (1976).Google Scholar
  9. 9.
    O.R. Zaborsky, Immobilized Enzymes, CRC Press, West Palm Beach, FL (1973).Google Scholar
  10. 10.
    I. Chibata and T. Tosa, in Advances in Applied Microbiology (D. Perlman, ed.), 22, 1, Academic Press, New York (1977).Google Scholar
  11. 11.
    O.Zaborsky, World Conference on Future Sources of Organic Raw Materials, Toronto, Canada, 1978. Pergamon Press, in press.Google Scholar
  12. 12.
    C. R. Wilke, ed., Cellulose as a Chemical and Energy Resource, Biotechnol. Bioeng. Symposium No. 5, John Wiley, New York (1975).Google Scholar
  13. 13.
    E. K. Paruchuri, M. Charles, K. Julkowski and R.W. Coughlin, AIChE Symposium Series No. 1972, Vol. 74, 40 (1978).Google Scholar
  14. 14.
    E.J. Beckhorn, Production of Industrial Enzymes, Wallterstein Laboratoriesf Communications, 201 (1960).Google Scholar
  15. 15.
    F.A. Quiocho and F.M. Richards, Proc. Natl. Acad. Sci., U.S., 52, 833 (1964).CrossRefADSGoogle Scholar
  16. 16.
    R. Y. Stanier, E.A. Adelberg and J.L. Ingraham, The Microbial World, Prentice-Hall, Englewood Cliffs, NJ (1976).Google Scholar
  17. 17.
    T. D. Brock, Thermophilic Microorganisms and Life at High Temperatures, Springer-Verlag, New York (1978).Google Scholar
  18. 18.
    R. Singleton, Jr., and R.E. Amelunxen, Bact. Rev. 37, 320 (1973).Google Scholar
  19. 19.
    A. R. Doig, Jr., in Enzyme Engineering (E.K. Pye and L.B. Wingard, Jr., eds.), Vol. 2, 17, Plenum, New York (1974).Google Scholar
  20. 20.
    G. Hamer, in Microbial Conversion Systems for Food and Fodder Production and Waste Management, Proceedings of the Regional Seminar, Kuwait Institute for Scientific Research (KISR), November 12–17, 1977 (T.G. Overmire, ed.) 109, KISR (1978).Google Scholar
  21. 21.
    M.C. Williams, Plant Physiol. 35, 500 (1960).CrossRefGoogle Scholar
  22. 22.
    C.B. Osmond, Aust. J. Biol. 20, 575 (1967).Google Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Robert W. Coughlin
    • 1
  • Oskar R. Zaborsky
    • 2
  1. 1.Department of Chemical EngineeringUniversity of ConnecticutStorrsUSA
  2. 2.National Science FoundationUSA

Personalised recommendations