Advertisement

Salt Tolerance in Microorganisms

  • Janos K. Lanyi
Part of the Environmental Science Research book series (ESRH, volume 14)

Summary

Extremely and moderately halophilic bacteria may be considered models for biological salt tolerance. These organisms have evolved in saline environments and are able to overcome the deleterious effects of salt, up to saturating concentrations. Their intracellular components: enzymes, ribosomes, membranes, etc. have been modified in a variety of ways, which provide the physical chemical basis for the salt tolerance. An excess of acidic residues and a deficiency of hydrophobic residues in the proteins from extremely halophilic bacteria cause these structures to be stabilized by high concentrations of salt. Many proteins and the ribosomes show marked preference for KC1 over NaCl. This is consistent with the fact that the halophiles accumulate K+ and exclude Na+. The gradients are produced by coupling cation transport to the protonmotive force generated by various membraneous systems. The regulation, as well as the energization, of Na+ transport by the gradient of protons proceeds so as to suggest that maintaining low internal Na+ concentration is a desirable goal for the cells. It has not been established, however, whether the preference exhibited by the enzymes, etc. for KC1 is a result of the limitations of salt-polyelectrolyte interaction, or a consequence of adaptation to preexisting intracellular conditions.

Keywords

Salt Tolerance High Salt Concentration Halophilic Bacterium Marked Preference Threonine Deaminase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Larsen, H. (1962) in “The Bacteria” (Gunsalus, I.C. and Stanier, R.Y., eds.) vol. 4, pp. 297–342, Academic Press, New York.Google Scholar
  2. 2.
    Oesterhelt, D. and Stoeckenius, W. (1973) Proc. Nat. Acad. Sci. U.S.A. 70, 2853–2857CrossRefADSGoogle Scholar
  3. 3.
    Danon, A. and Stoeckenius, W. (1974) Proc. Nat. Acad. Sci. U.S.A. 71, 1234–1238CrossRefADSGoogle Scholar
  4. 4.
    Lanyi, J. K. (1979) in “Membrane Proteins in Energy Transduction” (Capaldi, R.A., ed.) Marcel Dekker, New York, pp. 451–483.Google Scholar
  5. 5.
    Larsen, H. (1967) in “Advan. Microbial Physiol.” (Rose, A.H. and Wilkinson, J.R., eds.) vol. 1, pp. 97–132, Academic Press, New York.Google Scholar
  6. 6.
    Lanyi, J. K. (1974) Bacteriol. Reviews 38, 272–290Google Scholar
  7. 7.
    Christian, J. H. B, Waltho, J. A. (1962) Biochim. Biophys. Acta 65, 506–508CrossRefGoogle Scholar
  8. 8.
    Holmes, P. K., Halvorson, H. O. (1965) J. Bacteriol. 90, 316–326.Google Scholar
  9. 9.
    Hubbard, J. S., Miller, A. B. (1969) J. Bacteriol. 99, 161–168Google Scholar
  10. 10.
    Hubbard, J. S., Miller, A. B. (1970) J. Bacteriol. 102, 677–681.Google Scholar
  11. 11.
    Liebermann, M. M., Lanyi, J. K. (1973) Biochemistry 11, 211–216.CrossRefGoogle Scholar
  12. 12.
    Wulff, K., Hubbard, J. S., Miller, A. B. (1972) Arch. Biochem. Biophs. 148, 318–319.CrossRefGoogle Scholar
  13. 13.
    Lanyi, J. K. (1969) J. Biol. Chem. 244, 4168–4173.Google Scholar
  14. 14.
    Mevarech, M., Eisenberg, H., Neumann, E. (1977) Biochemistry 16, 3781–3786.CrossRefGoogle Scholar
  15. 15.
    Lanyi, J.K. and Stevenson, J. (1970) J. Biol. Chem. 245, 4074–4080.Google Scholar
  16. 16.
    Liebermann, M. M., Lanyi, J. K. (1971) Biochim. Biophys. Acta 245, 21–33Google Scholar
  17. 17.
    Higa, A., Cazzulo, J. J. (1975) Biochem. J. 147, 267–274.Google Scholar
  18. 18.
    Mevarech, M. and Neumann, E. (1977) Biochemistry 17, 3786–3792.CrossRefGoogle Scholar
  19. 19.
    Hayashi, M., Unemoto, T. and Hayashi, M. (1973) Biochim. Biophys. Acta 315, 83–93.Google Scholar
  20. 20.
    Bayley, S.T. and Kushner, D.J. (1964) J. Mol. Biol. 9, 654–669.CrossRefGoogle Scholar
  21. 21.
    Bayler, S. T. (1966) J. Mol. Biol. 15, 420–427.CrossRefGoogle Scholar
  22. 22.
    Visentin, L. P., Chow, C., Matheson, A.T., Yaguchi, M. and Rollin, F. (1972) Biochem. J. 130, 103–110.Google Scholar
  23. 23.
    Lanyi, J.K. (1975) in “Extreme Environments: Mechanisms of Microbial Adaptation” (Heinrich, M., ed.) pp. 295–303, Academic Press, New York.Google Scholar
  24. 24.
    Kates, M.(1973) in Ether Lipids; Chemistry and Biology (Snyder, F., ed.) pp. 351–398, Academic Press, New York.Google Scholar
  25. 25.
    Brown, A. D. (1964) Bacteriol. Reviews 28, 296–329.Google Scholar
  26. 26.
    Lanyi, J. K. (1971) J. Biol. Chem. 246, 4552–4559.Google Scholar
  27. 27.
    Plachy, W. A., Lanyi, J.K. and Kates, M. (1974) Biochemistry 13, 4906–4913.CrossRefGoogle Scholar
  28. 28.
    Lanyi, J.K., Plachy, W.Z. and Kates, M. (1974) Biochemistry 13, 4914–4920.CrossRefGoogle Scholar
  29. 29.
    Brown, A.D. (1976) Bacteriol. Reviews 40, 803–846.Google Scholar
  30. 30.
    Harold, F.M. and Altendorf, K. (1974) in “Current Topics in Membranes and Transport” (Bronner, F. and Kleinzeller, A., eds.) vol. 5, pp. 1–50, Academic Press, New York.Google Scholar
  31. 31.
    MacDonald, R. E. and Lanyi, J.K. (1975) Biochemistry 14, 2882–2889CrossRefGoogle Scholar
  32. 32.
    Belliveau, J.W. and Lanyi, J.K. (1977) Arch. Biochem. Biophys. 178, 308–314.CrossRefGoogle Scholar
  33. 33.
    Renthal, R. and Lanyi, J.K. (1976) Biochemistry 15, 2136–2143.CrossRefGoogle Scholar
  34. 34.
    Lanyi, J. K., Renthal, R. and MacDonald, R.E. (1976) Biochemistry 15, 1603–1610.CrossRefGoogle Scholar
  35. 35.
    Lanyi, J. K. and MacDonald, R.E. (1976) Biochemistry 15, 4608–4614CrossRefGoogle Scholar
  36. 36.
    Eisenbach, M., Cooper, S., Garty, H., Johnstone, R.M., Rottenberg H. and Caplan, S.R. (1977) Biochim. Biophys. Acta 465, 599–613.CrossRefGoogle Scholar
  37. 37.
    Kanner, B.I. and Racker, E. (1975) Biochem. Biophys. Res. Comm. 64, 1054–1061.CrossRefGoogle Scholar
  38. 38.
    Lanyi, J.K., Helgerson, S.L. and Silverman, M.P. (1979) Arch. Biochem. Biophys. 193, 329–339.CrossRefGoogle Scholar
  39. 39.
    Wagner, G., Hartmann, R. and Oesterhelt, D. (1978) Eur. J. Biochem. 89, 169–179.CrossRefGoogle Scholar
  40. 40.
    Lanyi, J. K. and Silverman, M.P.(1979) J. Biol. Chem. (in press).Google Scholar
  41. 41.
    Bakker, E.P., Rothenberg, H. and Caplan, S.R. (1976) Biochim. Biophys. Acta 440, 557–572.CrossRefGoogle Scholar
  42. 42.
    Michel, H. and Oesterhelt, D. (1976) FEBS Lett. 65, 175–178.CrossRefGoogle Scholar
  43. 43.
    Wagner, G. and Hope, A.B. (1976) Austr. J. Plant Physiol.3, 665– 676.Google Scholar
  44. 44.
    Lanyi, J. K. and Silverman, M.P. (1972) Can. J. Microbiol. 18, 993– 995.CrossRefGoogle Scholar
  45. 45.
    Ginzburg, M. and Ginzburg, B.Z. (1976) J. Membr. Biol. 26, 153–172.Google Scholar
  46. 46.
    Harold, F.M. and Papineau, D. (1972) J. Membr. Biol. 8, 45–62.CrossRefGoogle Scholar
  47. 47.
    West, I.C. and Mitcehll, P. (1974) Biochem J. 144, 87–90.Google Scholar
  48. 48.
    Shindler, D.B., Wydro, R.M. and Kushner, D. J. (1977) J. Bacteriol. 130, 698–703.Google Scholar
  49. 49.
    Skulachev, V. P. (1978) FEBS Lett. 87, 171–179.CrossRefGoogle Scholar
  50. 50.
    MacDonald, R. E., Greene, R.V. and Lanyi, J.K. (1977) Biochemistry 16, 3227–3235.CrossRefGoogle Scholar
  51. 51.
    Stock, J., Roseman, S. (1971) Biochem. Biophys, Res. Comm. 44, 132–138.CrossRefGoogle Scholar
  52. 52.
    Tsuchiya, T., Raven, J. and Wilson, T.H. (1977) Biochem. Biophys. Res. Comm. 76, 26–31.CrossRefGoogle Scholar
  53. 53.
    Tokuda, H. and Kaback, J.R. (1977) Biochemistry 16, 2130–2136.CrossRefGoogle Scholar
  54. 54.
    Macdonald R.E., Lanyi, J.K. and Greene, R.V. (1977) Proc. Nat. Acad. Sci. U.S.A. 74, 3167–3170.CrossRefADSGoogle Scholar
  55. 55.
    Rafaeli-Eschkol, D. (1968) Biochem. J. 109, 679–685.Google Scholar
  56. 56.
    Rafaeli-Eschkol, D. and Avi-Dor, Y. (1968) Biochem. J. 109, 687–691.Google Scholar
  57. 57.
    Shkedy-Vinkler, C. and Avi-Dor, Y. (1975) Biochem J. 150, 219–226.Google Scholar
  58. 58.
    Moore, R. L. and McCarthy, B. (1969) J. Bacteriol. 99, 255–262.Google Scholar
  59. 59.
    Woese, C.R. (Personal Communication)Google Scholar
  60. 60.
    Woese, C.R. and Fox, G.E. (1977) Proc. Nat. Acad. Sci. U.S.A. 74, 5088–5090.CrossRefADSGoogle Scholar
  61. 61.
    Kerscher, L., Oesterhelt, D., Cammack, R. and Hall, D.O. (1976) Eur. J. Biochem, 71, 101–107.CrossRefGoogle Scholar
  62. 62.
    Werber, M. M., Mevarech, M., Leicht, W. and Eisenberg, H. (1978) in “Halophilic Microorganisms” (Caplan, S.R. and Ginzburg, M., eds.) Elsevier, Amsterdam, pp. 427–446.Google Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Janos K. Lanyi
    • 1
  1. 1.NASA-Ames Research CenterMoffett FieldUSA

Personalised recommendations