The Biochemical Basis of Disease

  • Robert H. Herman
  • Robert M. Cohn

Abstract

The physician sees patients who complain of symptoms, and, in order to provide rational therapy, he must arrive at a correct diagnosis. Accordingly, the physician takes a medical history, performs a physical examination, and obtains whatever laboratory studies are deemed necessary. The physician uses his findings to provide a diagnosis, therapy, and a prognosis. This classical approach to the practice of medicine is depicted in Fig. 1.

Keywords

Lactose Porphyrin Phenylalanine Pyrimidine Valine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, I. M., 1975, Treatment of primary immunodeficiency, Proc. R. Soc. Med. 68: 577.PubMedGoogle Scholar
  2. Athwal, R. S., and McBride, O. W., 1977, Serial transfer of a human gene to rodent cells by sequential chromosome-mediated gene transfer, Proc. Natl. Acad. Sci. USA 74: 2943.PubMedGoogle Scholar
  3. Awrich, A. E., Stackhouse, W. J., Cantrell, J. E., Patterson, J. H., and Rudman, D., 1975, Hyperdibasic aminoaciduria, hyperammonemia, and growth retardation: Treatment with arginine, lysine, and citrulline, J. Pediatr. 87: 731.PubMedGoogle Scholar
  4. Badr, F. M., Lorkin, P. A., and Lehmann, H., 1972, Haemoglobin P-Nilotic containing β -δ chain, Nature (New Biol.) 242: 107.Google Scholar
  5. Baltimore, D., 1977, quoted in: Research with Recombinant DNA, p. 237, National Academy of Sciences, Washington, D. C.Google Scholar
  6. Barnabas, J., and Muller, C. J., 1962, Haemoglobin-LeporeHollandia, Nature 194: 931.Google Scholar
  7. Becker, M. A., Kostel, P. J., Meyer, L. J., and Seegmiller, J. E., 1973, Human phosphoribosylpyrophosphate synthetase: Increased enzyme specific activity in a family with gout and excessive purine synthesis, Proc. Natl. Acad. Sci. USA 70: 2749.PubMedGoogle Scholar
  8. Becker, M. A., Meyer, L. J., Kostel, P. J., and Seegmiller, J. E., 1974, Increased 5-phosphoribosyl-1-pyrophosphate (PRPP) synthetase activity and gout: Diversity and structural alterations of the enzyme, J. Clin. Invest. 53: 4a.Google Scholar
  9. Beckwith, J. R., 1967, Regulation of the Lac operon, Science 156: 597.PubMedGoogle Scholar
  10. Belchetz, P. E., Braidman, I. P., Crawley, J. C. W., and Gregoriadis, G., 1977, Treatment of Gaucher’s disease with liposome -entrapped glucocerebroside: β-Glucosidase, Lancet 2: 116.PubMedGoogle Scholar
  11. Beutler, E., Dale, G. L., Guinto, E., and Kuhl, W., 1977, Enzyme replacement therapy in Gaucher’s disease: Preliminary clinical trial of a new enzyme preparation, Proc. Natl. Acad. Sci. USA 74: 4620.PubMedGoogle Scholar
  12. Blackwell, R. Q., Boon, W. H., Liu, C. S., and Weng, M. I., 1972, Hemoglobin J Singapore: α78 Asn → Asp; α79 Ala→ Gly, Biochim. Biophys. Acta 278: 482.Google Scholar
  13. Bongiovanni, A. M., 1978, Congenital adrenal hyperplasia and related conditions, in: The Metabolic Basis of Inherited Disease (J. B. Stanbury, J. B. Wyngaarden, and D. S. Fredrickson, eds.), pp. 868–893, 4th ed., McGraw-Hill, New York.Google Scholar
  14. Bookchin, R. M., Nagel, R. L., Ranney, H. M., and Jacobs, A. S., 1966, Hemoglobin CHarlem: A sickling variant containing amino acid substitutions in two residues of the β-polypeptide chain, Biochem. Biophys. Res. Commun. 23: 122.PubMedGoogle Scholar
  15. Boyer, S. H., Siggers, D. C., and Krueger, L. J., 1973, Caveat to protein replacement therapy for genetic disease. Immunological implications of accurate molecular diagnosis, Lancet 2: 654.PubMedGoogle Scholar
  16. Braconnier, F., Gacon, G., Thillet, J., Wajcman, H., Soria, J., Maigret, P., Labie, D., and Rosa, J., 1977, Hemoglobin Fort De France (α245(CD3) His→Arg β2). A new variant with increased oxygen affinity, Biochim. Biophys. Acta 493: 228.PubMedGoogle Scholar
  17. Brady, R. O., Tallman, J. F., Johnson, W. G., Gal, A. E., Leahy, W. R., Quirk, J. M., and Dekaban, A. S., 1973, Replacement therapy for inherited enzyme deficiency. Use of purified ceramidetrihexosidase in Fabry’s disease, N. Engl. J. Med. 289: 9.PubMedGoogle Scholar
  18. Brady, R. O., Pentchev, P. G., Gal, A. E., Hibbert, S. R., and Dekaban, A. S., 1974, Replacement therapy for inherited enzyme deficiency: Use of purified glucocerebrosidase in Gaucher’s disease, N. Engl. J. Med. 291: 989.PubMedGoogle Scholar
  19. Brady, R. O., Pentchev, P. G., and Gal, A. E., 1975, Investigation in enzyme -replacement therapy in lipid storage diseases, Fed. Proc. 34: 1310.PubMedGoogle Scholar
  20. Burke, V., and Danks, D. M., 1966, Monosaccharide malabsorption in young infants, Lancet 1: 1177.Google Scholar
  21. Cantz, M., and Gehler, J., 1976, The mucopolysaccharidoses: Inborn errors of glycosaminoglycan catabolism, Hum. Genet. 32: 233.PubMedGoogle Scholar
  22. Chambon, P., 1978, Summary: The molecular biology of the eukaryotic genome is coming of age, Cold Spring Harbor Symp. Quant. Biol. 42: 1209.PubMedGoogle Scholar
  23. Clarke, J. T. R., Guttman, R. D., Wolfe, L. S., Beudorn, J. G., and Morehouse, D. D., 1972, Enzyme replacement therapy by renal allotransplantation in Fabry’s disease, N. Engl. J. Med. 287: 1215.PubMedGoogle Scholar
  24. Clegg, J. B., and Weatherall, D. J., 1978, Molecular basis of thalassaemia, Br. Med. Bull., 32: 262.Google Scholar
  25. Clegg, J. B., Weatherall, D. J., and Milner, P. F., 1971, Haemoglobin Constant Spring-a chain termination mutant?, Nature 234: 237.Google Scholar
  26. Cohn, R. M., and Segal, S., 1977, Disorders of galactose metabolism, in: Scientific Approaches to Clinical Neurology ( E. Goldensohn, and S. Appel, eds.), p. 99, Lea and Febiger, Philadelphia.Google Scholar
  27. Columbo, J. P., Vassella, F., Humbel, R., and Buergi, W., 1967, Lysine intolerance with periodic ammonia intoxication, Am. J. Dis. Child. 113: 138.Google Scholar
  28. Conconi, F., Rowley, P. T., Del Senno, L., Pontremoli, S., and Volpato, S., 1972, Induction of β-globin synthesis in the β-thalassaemia of Ferrara, Nature (New Biol.) 238: 83.Google Scholar
  29. Dau, P. C., Lindstrom, J. M., Cassel, C. K., Denys, E. H., Shev, E. E., and Spitler, L. E., 1977, Plasmapheresis and immunosuppressive drug therapy in myasthenia gravis, N. Engl. J. Med. 297: 1134.PubMedGoogle Scholar
  30. Dean, J., and Schechter, A. N., 1978, Sickle-cell anemia: Molecular and cellular bases of therapeutic approaches, N. Engl. J. Med. 299: 752.PubMedGoogle Scholar
  31. De Jong, W. W. W., Went, L. N., and Bernini, L. F., 1968, Hemoglobin Leiden: Deletion of β6 or 7 glutamic acid, Nature 220: 788.PubMedGoogle Scholar
  32. Dern, R. J., 1966, A new hereditary quantitative variant of glucose-6-phosphate dehydrogenase characterized by a marked increase in enzyme activity, J. Lab. Clin. Med. 68: 560.PubMedGoogle Scholar
  33. Desnick, S. J., Desnick, R. J., Brady, R. O., Pentchev, P. G., Simmon, R. L., Najarian, J. S., Swaisnan, K., Sharp, H. L., and Krivit, W., 1973, Renal transplantation in type II, Gaucher’s disease, in: Enzyme Therapy in Genetic Diseases ( D. Bergsma, ed.), pp. 109–119, Williams and Wilkins, Baltimore.Google Scholar
  34. Dickson, R. C., Abelson, J., Barnes, W. M., and Reznikoff, W. S., 1975, Genetic regulation: The Lac control region, Science 187: 27.PubMedGoogle Scholar
  35. Diederich, D. A., Trueworthy, R. C., Gill, P., Cader, A. M., and Larsen, W. E., 1976, Hematologic and clinical responses in patients with sickle cell anemia after chronic extracorporeal red cell carbamylation, J. Clin. Invest. 58: 642.Google Scholar
  36. Donaldson, E. M., Donaldson, A. D., and Rimington, C., 1967, Erythropoietic protoporphyria: A family study, Br. Med. J. 1: 659.PubMedGoogle Scholar
  37. Feinstein, D., Chong, M. N. Y., Kasper, C. K., and Rapaport, S. I., 1969, Hemophilia A: Polymorphism detectable by a factor VIII antibody, Science 163: 1071.PubMedGoogle Scholar
  38. Feinstein, R. N., Suter, H., and Jaroslow, B. N., 1968, Blood catalase polymorphism: Some immunological aspects, Science 159: 638.PubMedGoogle Scholar
  39. Flavell, R., Kooter, J. M., De Boer, E., Little, P. F. R., and Williamson, R., 1978, Analysis of the β-δ-globin gene loci in normal and Hb Lepore DNA: Direct determination of gene linkage and intragene distance, Cell 15: 25.PubMedGoogle Scholar
  40. Følling, A., 1934, Über Ausscheidung von Phenylbrenztraubensaure in den Harn als Stoffwechselanomalie in Verbindung mit Imbezillitat, Z. Physiol. Chem. 227: 169.Google Scholar
  41. Fraser, D., and Scriver, C. R.,1976, Familial forms of vitamin D-resistant rickets revisited. X-linked hypophosphatemia and autosomal recessive vitamin D dependency, Am. J. Clin. Nutr. 29: 1315.PubMedGoogle Scholar
  42. Garrod, A. E., 1908, Inborn errors of metabolism (Croonian Lectures), Lancet 2: 1, 73, 142, and 214.Google Scholar
  43. Gelehrter, T. D., 1976, Enzyme induction, N. Engl. J. Med. 294: 646.PubMedGoogle Scholar
  44. Gelfand, J. A., Sherins, R. J., Alling, D. W., and Frank, M. M., 1976, Treatment of hereditary angioedema with Danazol. Reversal of clinical and biochemical abnormalities, N. Engl. J. Med. 295: 1444.PubMedGoogle Scholar
  45. Gitzelmann, R., Steinmann, B., Bally, C., and Lebherz, H. G., 1974, Antibody activation of mutant human fructosediphosphate aldolase B in liver extracts of patients with hereditary fructose intolerance, Biochem. Biophys. Res. Commun. 59: 1270.PubMedGoogle Scholar
  46. Godeau, J. F., Beuzard, Y. G., Cacheieux, J., Brizard, C. P., Gibaud, A., and Rosa, J., 1976, Association of hemoglobin Saint Etienne (α2β292F8 His→Gln) with hemoglobins A and F. Synthesis and subunit exchange in vitro, J. Biol. Chem. 251: 4346.PubMedGoogle Scholar
  47. Greene, H. L., Stifel, F. B., and Herman, R. H., 1972, Dietary stimulation of sucrase in a patient with sucrase-isomaltase deficiency, Biochem. Med. 6: 409.PubMedGoogle Scholar
  48. Groth, C. G., Blomstrand, R., Dreborg, S., Hagenfeldt, L., Lofstrom, B., Ockerman, P., Samuelson, K., and Svernerholm, L., 1973. Splenic transplantation in Gaucher’s disease, in: Enzyme Therapy in Genetic Disease (D. Bergsma, ed.), pp. 102–105, Williams and Wilkins, Baltimore.Google Scholar
  49. Gudmand-Høyer, E., 1971, Specific Lactose Malabsorption in Adults, Fadl’s Forlag, Copenhagen.Google Scholar
  50. Haining, R. G., Cowger, M. L., Shurtleff, D. B., and Labbe, R. F., 1968, Congenital erythropoietic porphyria. I. Case report, special studies and therapy, Am. J. Med. 45: 624.PubMedGoogle Scholar
  51. Harris, J. W., and Horrigan, D. D., 1964, Pyridoxine responsive anemia: Prototype and variations on theme, Vitam. Horm. 22: 721.PubMedGoogle Scholar
  52. Hodgkin, W. E., Giblett, E. R., Levine, H., Bauer, W., and Motulsky, A. G., 1965, Complete pseudocholinesterase deficiency: Genetic and immunologic characterization, J. Clin. Invest. 44: 486.PubMedGoogle Scholar
  53. Howell, R. R., 1978, The glycogen storage diseases, in: The Metabolic Basis of Inherited Disease (J. B. Stanbury, J. B. Wyngaarden, and D. S. Fredrickson, eds.), pp. 137–159, 4th ed., McGraw-Hill, New York.Google Scholar
  54. Hue, L., 1974, The metabolism and toxic effects of fructose, in: Sugars in Nutrition ( H. L. Sipple and K. W. McNutt, eds.), pp. 357–371, Academic Press, New York.Google Scholar
  55. Jacob, F., and Monod, J., 1961, Genetic regulatory mechanisms in the synthesis of proteins, J. Mol. Biol. 3: 318.PubMedGoogle Scholar
  56. Kan, Y. W., Holland, J. P., Dozy, A. M., and Varmus, H. E., 1975, Demonstration of nonfunctional β-globin mRNA in homozygous β°-thalassemia, Proc. Natl. Acad. Sci. USA 72: 5140.PubMedGoogle Scholar
  57. Kelley, W. N., and Smith, L. H., Jr., 1978, Hereditary orotic aciduria, in: The Metabolic Basis of Inherited Disease Q. B. Stanbury, J. B. Wyngaarden, and D. S. Fredrickson, eds.), pp. 1045–1071, 4th ed., McGraw-Hill, New York.Google Scholar
  58. Kelley, W. N., and Wyngaarden, J. B., 1978, The Lesch-Nyhan syndrome, in: The Metabolic Basis of Inherited Disease (J. B. Stanbury, J. B. Wyngaarden, and D. S. Fredrickson, eds.), pp. 1011–1036, 4th ed., McGraw-Hill, New York.Google Scholar
  59. Knauer, C. M., Gamble, C. N., and Monroe, L. S., 1965, The reversal of hemochromatotic cirrhosis by multiple phlebotomies, Gastroenterology 49: 667.PubMedGoogle Scholar
  60. Knox, W. W., 1972, Phenylketonuria, in: The Metabolic Basis of Inherited Disease (J. B. Stanbury, J. B. Wyngaarden, and D. S. Fredrickson, eds.), pp. 266–295, 3rd ed., McGraw-Hill, New York.Google Scholar
  61. Konotey-Ahulu, F. I. D., Gallo, E., Lehmann, H., and Ringelhann, B., 1968, Haemoglobin Korle-Bu (β73 Asp→Asn) showing one of the two amino acid substitutions of haemoglobin C Harlem, J. Med. Genet. 5: 107.PubMedGoogle Scholar
  62. Krieger, I., and Tanaka, K., 1976, Therapeutic effects of glycine in isovaleric acidemia, Pediatr. Res. 10: 25.PubMedGoogle Scholar
  63. Labie, D., Schroeder, W. A., and Huisman, T. H. J., 1966, The amino acid sequence of the δ-β chains of hemoglobin LeporeAugusta = LeporeWashington, Biochim. Biophys. Acta 127: 428.PubMedGoogle Scholar
  64. Lauer, R. M., Mascarinas, T., Racela, A. S., and Diehl, A. M., 1968, Administration of a mixture of fungal glycosidases to a patient with type II glycogenosis (Pompe’s disease), Pediatrics 42: 672.PubMedGoogle Scholar
  65. Leaf, A., 1966, The syndrome of osteomalacia, renal glycosuria, aminoaciduria, and increased phosphorus clearance (Fanconi syndrome), in: The Metabolic Basis of Inherited Disease (J. B. Stanbury, J. B. Wyngaarden, and D. S. Fredrickson, eds.), pp. 1205–1220, 2nd ed., McGraw-Hill, New York.Google Scholar
  66. Libby, P., and Goldberg, A. L., 1978, Leupeptin, a protease inhibitor, decreases protein degradation in normal and diseased muscles, Science 199: 534.PubMedGoogle Scholar
  67. Lindquist, B., and Meeuwisse, G. W., 1962, Chronic diarrhea caused by monosaccharide malabsorption, Acta Paediatr. Scand. 51: 674.Google Scholar
  68. Malekzadeh, M. H., Neustein, H. B., Schneider, J. A., Pennisi, A. J., Ettenger, R. B., Uittenbogaart, C. H., Kogut, M. D., and Fine, R. N., 1977, Cadaver renal transplantation in children with cystinosis, Am. J. Med. 63: 525.PubMedGoogle Scholar
  69. Marks, P. A., and Tsutsui, E. A., 1963, Human glucose-6-P dehydrogenase: Studies on the relation between antigenicity and catalytic activity-The role of TPN, Ann. N. Y. Acad. Sci. 103: 902.Google Scholar
  70. McDowell, M. K., Herman, R. H., and Davis, T. E., 1963, The effect of a high and low sodium diet in a patient with familial periodic paralysis, Metabolism 12: 388.Google Scholar
  71. Mears, J. G., Ramirez, F., Leibowitz, D., and Bank, A., 1978a, Organization of human δ-andβ-globin genes in cellular DNA and the presence of intragenic inserts, Cell 15: 15.PubMedGoogle Scholar
  72. Mears, J. G., Ramirez, F., Leibowitz, D., Nakamura, F., Bloom, A., Konotey-Ahulu, F., and Bank, A., 1978b, Changes in restricted human cellular DNA fragments containing globin gene sequences in thalassemias and related disorders, Proc. Natl. Acad. Sci. USA 75: 1222.PubMedGoogle Scholar
  73. Mentzer, W. C., Lubin, B. H., and Emmons, S., 1976, Correction of the permeability defect in hereditary stomatocytosis by dimethyl adipimidate, N. Engl. J. Med. 294: 1200.PubMedGoogle Scholar
  74. Meyer, U. A., and Schmid, R., 1978, The porphyrias, in: The Metabolic Basis of Inherited Disease (J. B. Stanbury, J. B. Wyngaarden, and D. S. Fredrickson, eds.), pp. 1166–1220, 4th ed., McGraw-Hill, New York.Google Scholar
  75. Milner, P. F., Clegg, J. B., and Weatherall, D. J., 1971, Haemoglobin-H disease due to a unique haemoglobin variant with an elongated α-chain, Lancet 1: 729.PubMedGoogle Scholar
  76. Monteleone, J. A., Bautler, E., Monteleone, P. L., Utz, C. L., and Casey, E. C., 1971, Cataracts, galactosuria, and hypergalactosemia due to galactokinase deficiency in a child, Am. J. Med. 50: 403.PubMedGoogle Scholar
  77. Moynahan, E. J., 1974, Acrodermatitis enteropathica: A lethal inherited human zinc deficiency disorder, Lancet 2: 399.PubMedGoogle Scholar
  78. Mudd, S. H., and Levy, H. L., 1978, Disorders of transsulfuration, in: The Metabolic Basis of Inherited Disease (J. B. Stanbury, J. B. Wyngaarden, and D. S. Fredrickson, eds.), pp. 458–503, 4th ed., McGraw-Hill, New York.Google Scholar
  79. Mukherjee, A. B., Orloff, S., Butler, J. DeB., Triche, T., Lalley, P., and Schulman, J. D., 1978, Entrapment of metaphase chromosomes into phospholipid vesicles (lipo-chromosomes): Carrier potential in gene transfer, Proc. Natl. Acad. Sci. USA 75: 1361.PubMedGoogle Scholar
  80. Nagel, R. L., Lynfield, J., Johnson, J., Landau, L., Bookchin, R. M., and Harris, M. B., 1976, Hemoglobin Beth Israel. A mutant causing clinically apparent cyanosis, N. Engl. J. Med. 295: 125.PubMedGoogle Scholar
  81. Nishimura, E. T., Kobara, T. Y., Takahara, S., Hamilton, H. B., and Madden, S. C., 1961, Immunologic evidence of catalase deficiency in human hereditary acatalasemia, Lab. Invest. 10: 333.PubMedGoogle Scholar
  82. O’Brien, J. S., Miller, A. L., Loverde, W. A., and Veath, M. L., 1973, Sanfilippo disease type B: Enzyme replacement and metabolic correction in cultured fibroblasts, Science 181: 753.PubMedGoogle Scholar
  83. O’Reilly, R. J., Dupont, B., Pahwa, S., Grimes, E., Smithwick, E. M., Pahwa, R., Schwartz, S., Hansen, J. A., Siegal, F. P., Sorell, M., Svejgaard, A., Jersild, C., Thomsen, M., Platz, P., L’Esperance, P., and Good, R. A., 1977, Reconstitution in severe combined immunodeficiency by transplantation of marrow from an unrelated donor, N. Engl. J. Med. 297: 1311.PubMedGoogle Scholar
  84. Paigen, K., Swank, R. T., Tomino, S., and Ganschow, R. E., 1975, The molecular genetics of mammalian glucuronidase, J. Cell. Physiol. 85: 379.PubMedGoogle Scholar
  85. Pauling, L., Itano, H. A., Singer, S. J., and Wells, I. C., 1949, Sickle cell anemia: A molecular disease, Science 110: 543.PubMedGoogle Scholar
  86. Ratnoff, O. D., 1978, Hereditary disorders of hemostasis, in: The Metabolic Basis of Inherited Disease (J. B. Stanbury, J. B. Wyngaarden, and D. S. Fredrickson, eds.), pp. 1755–1791, 4th ed., McGraw-Hill, New York.Google Scholar
  87. Reynolds, G. D., Baker, H. J., and Reynolds, R. H., 1978, Enzyme replacement using liposome carriers in feline GM1, gangliosidosis fibroblasts, Nature 275: 754.PubMedGoogle Scholar
  88. Richmond, J., Rosenoer, V. M., Tompsett, S. L., Draper, I., and Simpson, J. A., 1964, Hepato-lenticular degeneration (Wilson’s disease) treated by penicillamine, Brain 87: 619.PubMedGoogle Scholar
  89. Robbins, P. W., 1960, Immunological study of human muscle lacking phosphorylase, Fed. Proc. 19: 193.Google Scholar
  90. Rogers, S., 1971, Gene therapy: A potentially invaluable aid to medicine and mankind, Res. Commun. Chem. Path. Pharmacol. 2: 587.Google Scholar
  91. Rosenberg, L. E., 1978, Disorders of propionate, methylmalonate, and cobalamin metabolism, in: The Metabolic Basis of Inherited Disease (J. B. Stanbury, J. B. Wyngaarden, and D. S. Fredrickson, eds.), pp. 411–429, 4th ed., McGraw-Hill, New York.Google Scholar
  92. Rosenthal, I. M., Cornblath, M., and Crane, R. K., 1962, Congenital intolerance to sucrose and starch presumably caused by hereditary deficiency of specific enzymes in the brush border membrane of the. small intestine, J. Lab. Clin. Med. 60: 1012.Google Scholar
  93. Roth, K. S., and Segal, S., 1979, Tubular aspects of hereditary and developmental disorders of the kidney, in: Nephrology ( J. P. Grunfeld and J. Hamberger, eds.), pp. 949–975, John Wiley and Sons, New York.Google Scholar
  94. Salmon, S. E., Cline, M. J., Schultz, J., and Lehrer, R. I., 1970, Myeloperoxidase deficiency. Immunologic study of a genetic leukocyte defect, N. Engl. J. Med. 282: 250.PubMedGoogle Scholar
  95. Sass-Kortsak, A., and Bearn, A. G., 1978, Hereditary disorders of copper metabolism, in: The Metabolic Basis of Inherited Disease (J. B. Stanbury, J. B. Wyngaarden, and D. S. Fredrickson, eds.), pp. 1098–1126, 4th ed., McGraw-Hill, New York.Google Scholar
  96. Schmid, R., and McDonagh, A. F., 1978, Hyperbilirubinemia, in: The Metabolic Basis of Inherited Disease (J. B. Stanbury, J. B. Wyngaarden, and D. S. Fredrickson, eds.), pp. 1221–1257, 4th ed., McGraw-Hill, New York.Google Scholar
  97. Schmidt, R. M., Jue, D. L., Lyonnais, J., and Moo-Pen, W. F., 1976, HemoglobinBethesda, β145 (HC2) Tyr→ His, in a Canadian family, Am. J. Clin. Pathol. 66: 449.PubMedGoogle Scholar
  98. Schwartz, J. M., and Jaffé, E. R., 1978, Hereditary methemoglobinemia with deficiency of NADH dehydrogenase, in: The Metabolic Basis of Inherited Disease (J. B. Stanbury, J. B. Wyngaarden, and D. S. Fredrickson, eds.), pp. 1452–1464, 4th ed., McGraw-Hill, New York.Google Scholar
  99. Scriver, C. R., 1973, Vitamin-responsive inborn errors of metabolism, Metabolism 22: 1319.PubMedGoogle Scholar
  100. Scriver, C. R., and Rosenberg, L. E., 1973, Urea cycle and ammonia, in: Amino Acid Metabolism and Its Disorders pp. 234–249, W. B. Saunders, Philadelphia.Google Scholar
  101. Segal, S., 1972, Disorders of galactose metabolism, in: The Metabolic Basis of Inherited Disease (J. B. Stanbury, J. B. Wyngaarden, and D. S. Fredrickson, eds.), pp. 174–195, 3rd ed., McGraw-Hill, New York.Google Scholar
  102. Seldin, D. W., and Wilson, J. D., 1978, Renal tubular acidosis, in: The Metabolic Basis of Inherited Disease (J. B. Stanbury, J. B. Wyngaarden, and D. S. Fredrickson, eds.), pp. 1618–1633, 4th ed., McGraw-Hill, New York.Google Scholar
  103. Shibata, S., Miyaji, T., Ueda, S., Matsuoka, M., Iuchi, I., Yamada, K., and Shinkai, N., 1970, Hemoglobin Tochigi (β56–59 deleted). New unstable hemoglobin discovered in a Japanese family, Proc. Jap. Acad. 46: 440.Google Scholar
  104. Sperling, O., Persky-Brosh, S., Boer, P., and De Vries, A., 1973, Human erythrocyte phosphoribosylpyrophosphate synthetase mutationally altered in regulatory properties, Biochem. Med. 7: 389.PubMedGoogle Scholar
  105. Stein, J. A., and Tschudy, D. P., 1970, Acute intermittent porphyria. A clinical and biochemical study of 46 patients, Medicine 49: 1.PubMedGoogle Scholar
  106. Steinberg, D., Vroom, F. Q., Engel, W. K., Cammermeyer, J., Mize, C. E., and Avigan, J., 1967, Refsum’s disease-A recently characterized lipidosis involving the nervous system, Ann. Intern. Med. 66: 365.PubMedGoogle Scholar
  107. Steinberg, M. H., Adams, J. G., Thigpen, J. T., Morrison, F. S., and Dreiling, B. J., 1974, Hemoglobin Hope (α0β2136-gly-asp)-S disease: Clinical and biochemical studies, J. Lab. Clin. Med. 84: 632.PubMedGoogle Scholar
  108. Stent, G. S., 1964, The operon: on its third anniversary. Modulation of transfer RNA species can provide a workable model of an operator-less operon, Science 144: 816.PubMedGoogle Scholar
  109. Stracher, A., McGowan, E. B., and Shafiq, S. A., 1978, Muscular dystrophy: Inhibition of generation in vivo with protease inhibitors, Science 200: 50.PubMedGoogle Scholar
  110. Strand, L. J., Felsher, B. F., Redeker, A. G., and Marver, H. S., 1970, Heme biosynthesis in intermittent acute porphyria: Decreased hepatic conversion of porphobilinogen to porphyrins and increased delta- amino- levulinic acid synthetase activity, Proc. Natl. Acad. Sci. USA 67: 1315.PubMedGoogle Scholar
  111. Takahara, S., Ogata, M., Kobara, T. Y., Nishimura, E. T., and Brown, W. J., 1962, The “catalase protein” of acatalasemic red blood cells, Lab. Invest. 11: 782.PubMedGoogle Scholar
  112. Taunton, O. D., Greene, H. L., Stifel, F. B., Hofeldt, F. D., Lufkin, E. G., Hagler, L., Herman, Y., and Herman, R. H., 1978, Fructose-1, 6-diphosphatase deficiency, hypoglycemia, and response to folate therapy in a mother and her daughter, Biochem. Med. 19: 260.PubMedGoogle Scholar
  113. Theiss, W., and Sauer, E., 1977, DDAVP: Alternative to replacement treatment in mild hemophilia A and von Willebrand-Jürgens syndrome, Dtsch. Med. Wochschr. 102: 1769.Google Scholar
  114. Thier, S. O., and Segal, S., 1978, Cystinuria, in: The Metabolic Basis of Inherited Disease (J. B. Stanbury, J. B. Wyngaarden, and D. S. Fredrickson, eds.), pp. 1578–1592, 4th ed., McGraw-Hill, New York.Google Scholar
  115. Thillet, J., Cohen-Solal, M., Seligmann, M., and Rosa, J., 1976, Functional and physicochemical studies of hemoglobin St. Louis β (B10) Leu→ Gln. A variant with ferric β heme iron, J. Clin. Invest. 58: 1098.PubMedGoogle Scholar
  116. Tolstoshev, P., Mitchell, J., Lanyon, G., Williamson, R., Ottolenghi, S., Comi, P., Giglioni, B., Masera, G., Modell, B., Weatherall, D. J., and Clegg, J. B., 1976, Presence of gene for β globin in homozygous β0 thalassaemia, Nature 259: 95.PubMedGoogle Scholar
  117. Tomkins, G. M., Gelehrter, T. D., Granner, D., Martin, D., Jr., Samuels, H. H., and Thompson, E. B., 1969, Control of specific gene expression in higher organisms, Science 166: 1474.PubMedGoogle Scholar
  118. Tourian, A. Y., and Sidbury, J. B., 1978, Phenylketonuria, in: The Metabolic Basis of Inherited Disease (J. B. Stanbury, J. B. Wyngaarden, and D. S. Fredrickson, eds.), pp. 240–255, 4th ed., McGraw-Hill, New York.Google Scholar
  119. Tyrrell, D. A., Ryman, B. E., Keeton, B. R., and Dubowitz, M., 1976, Use of liposomes in treating type II glycogenosis, Br. Med. J. 2: 88.PubMedGoogle Scholar
  120. Wajcman, H., Labie, D., and Schapira, G., 1973, Two new hemoglobin variants with deletion. Hemoglobin Tours: Thr β87 (F3) deleted and hemoglobin St. Antoine: GlyLeu β74–75 (E18-19) deleted. Consequences for oxygen affinity and protein stability, Biochim. Biophys. Acta 295: 495.PubMedGoogle Scholar
  121. Walker, I. D., Davidson, J. F., Yound, P., and Conkie, J. A., 1975, Effect of anabolic steroids on plasma antithrombin III, α2-macroglobulin and α1-antitrypsin levels, Thromb. Diath. Haemorrh. 34: 106.PubMedGoogle Scholar
  122. Watson, J. D., and Crick, F. H. C., 1953, Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid, Nature 171: 737.PubMedGoogle Scholar
  123. Weatherall, D. J., 1978, The thalassemias, in: The Metabolic Basis of Inherited Disease (J. B. Stanbury, J. B. Wyngaarden, and D. S. Fredrickson, eds.), pp. 1508–1523, 4th ed., McGraw-Hill, New York.Google Scholar
  124. Wheby, M. S., and Miller, H. S., Jr., 1960, Idiopathic paroxysmal myoglobinuria. Report of two cases occurring in sisters. Review of the literature, Am. J. Med. 29: 599.PubMedGoogle Scholar
  125. Wilkins, R. J., 1974, DNA repair, a molecular process of medical relevance, N. Z. Med. J. 80: 210.PubMedGoogle Scholar
  126. Witkop, C. J., Jr., Quevado, W. C., Jr., and Fitzpatrick, T. B., 1978, Albinism, in: The Metabolic Basis of Inherited Disease (J. B. Stanbury, J. B. Wyngaarden, and D. S. Fredrickson, eds.), pp. 283–316, 4th ed., McGraw-Hill, New York.Google Scholar
  127. Wu, P. Y. K., 1974, Immediate and long-term effects of phototherapy on preterm infants, in: Phototherapy in the Newborn: An Overview (G. B. Odell, R. Schaffer, A. P. Simopoulos, eds.), pp. 150–160, National Academy of Sciences, Washington, D. C.Google Scholar
  128. Yoshida, A., 1970, Amino acid substitution (histidine to tyrosine) in a glucose-6-phosphate dehydrogenase variant (G6PD Hektoen) associated with overproduction, J. Mol. Biol. 52: 483.PubMedGoogle Scholar
  129. Yoshida, A., 1973, Hemolytic anemia and G6PD deficiency, Science 179: 532.PubMedGoogle Scholar
  130. Yudkoff, M., Cohn, R. M., Puschak, R., and Segal, S., 1978, Glycine therapy for isovaleric acidemia, J. Pediat. 92: 830.Google Scholar
  131. Zotin, A. I., and Zotina, R. S., 1967, Thermodynamic aspects of developmental biology, J. Theoret. Biol. 17: 57.Google Scholar
  132. Zubay, G., Schwartz, D., and Beckwith, J., 1970, Mechanism of activation of catabolitesensitive genes: A positive control system, Proc. Natl. Acad. Sci. USA 66: 104PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Robert H. Herman
    • 1
  • Robert M. Cohn
    • 2
  1. 1.Endocrine-Metabolic ServiceLetterman Army Medical CenterPresidio of San FranciscoUSA
  2. 2.Department of Metabolic Research, Children’s Hospital of PhiladelphiaUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations