Advertisement

Polarized-Photon, Scattered-Ion Coincidence Study of Mg+ Collisions with He, Ne, and Ar

  • N. Andersen
  • T. Andersen
  • C. L. Cocke
  • E. Horsdal Pedersen

Abstract

The impact-parameter dependence of the Mg II (3s ← 3p) emission has been studied for 3–15 keV Mg+-He, Mg+-Ne, Mg+-Ar collisions by means of photon, scattered-particle coincidence measurements, including polarization analysis. The resonance excitation can be described by means of two mechanisms: At low collision energies, the Mg II (3s → 3p) excitation occurs at molecular curve crossings, whereas direct excitation dominates at higher energies. The direct mechanism is essentially the same for all three collision systems and exhibits a high degree of coherence. The quasimolecular mechanism to a large extent depends on the asymmetry of the collision. The asymmetric Mg+-He, Mg+-Ar systems show substantial coherent excitation, whereas the resonance level is noncoherently excited in the quasisymmetric Mg+-Ne collision.

Keywords

Impact Parameter Emission Probability Emission Cross Section Resonance Level Collision System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Andersen, T. Andersen, and K. Jensen, J. Phys, B 9, 1373 (1976); J. O. Olsen and T. Andersen, J. Phys. B 8, L421 (1975); J. 0. Olsen, N. Andersen, and T. Andersen, Phys. B 10, 1723 (1977).ADSCrossRefGoogle Scholar
  2. 2.
    W. Mecklenbrauck, J. Schön, E. Speller, and V. Kempter, J. Phys. B 10, 3271 (1977); H. Alber, V. Kempter, and W. Mecklenbrauck, J. Phys. B 8, 913 (1975); V. Kempter, Proceedings of the 9 th International Conference on the Physics of Electronic and Atomic Collisions, 1975, University of Washington Press, Seattle, Invited Papers, pp. 327-344, and references therein; L. Zehnle, E. Clemens, P. J. Martin, W. Schäuble, and V. Kempter, J. Phys. B 11, 2133 (1978), and references therein.CrossRefGoogle Scholar
  3. 3.
    R. Düren, M. Kick, and H. Pauly, Chem. Phys. Lett. 27, 118 (1974).ADSCrossRefGoogle Scholar
  4. 4.
    J. Fayeton, N. Andersen, and M. Barat, J. Phys. B 9, LI49 ( 1976 ); J. Fayeton, thesis, Orsay (1977).Google Scholar
  5. 5.
    V. L. Ovchinnikov, O. B. Shpenik, and I. P. Zapesochnyi, Sov. Phys. Tech. Phys. 19, 382 (1974); O. B. Shpenik, V. L. Ovchinnikov, and I. P. Zapesochnyi, Ukr. Phys. J. 19, 1933 (1974).ADSGoogle Scholar
  6. 6.
    S. E. Nielsen and J. S. Dahler, J. Phys. B 9, 1383 (1976); Phys. Rev. A 16, 563 (1977); J. Manique, S. E. Nielsen, and J. S. Dahler, J. Phys. B 10, 1703 (1977).ADSCrossRefGoogle Scholar
  7. 7.
    C. Gaussorgues, V. Sidis, and M. Barat, Proceedings of the 10th International Conference on the Physics of Electronic and Atomic Collisions, Abstracts, pp. 706, Commissariat ä l’Energie Atomique, Paris (1977).Google Scholar
  8. 8.
    N. A. Sondergaard and E. A. Mason, J. Chem. Phys. 62, 1299 (1975).ADSCrossRefGoogle Scholar
  9. 9.
    E. Horsdal Pedersen, P. Wahnön, C. Gaussorgues, N. Andersen, T. Andersen, K. Bahr, M. Barat, C. L. Cocke, J. Ø. Olsen, J. Pommier, and V. Sidis, Phys. B 11, L317 (1978).CrossRefGoogle Scholar
  10. 10.
    S. E. Nielsen, N. Andersen, T. Andersen, J. Ø. Olsen, and J. S. Dahler, J. Phys. B11, 3187 (1978).ADSGoogle Scholar
  11. 11.
    S. E. Nielsen, private communication (1978). 402Google Scholar
  12. 12.
    J. Ø. Olsen, K. Vedel, and P. Dahl, J. Phys. B 12, 929 (1979).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • N. Andersen
    • 1
    • 2
  • T. Andersen
    • 1
  • C. L. Cocke
    • 1
    • 3
  • E. Horsdal Pedersen
    • 1
  1. 1.Institute of PhysicsUniversity of AarhusAarhus CDenmark
  2. 2.Physics Laboratory II, H. C. Ørsted InstituteCopenhagen ØDenmark
  3. 3.Department of PhysicsKansas State UniversityManhattanUSA

Personalised recommendations