Skip to main content

The Fish Telencephalon and Its Relation to Learning

  • Chapter
Comparative Neurology of the Telencephalon

Abstract

The study of the mammalian telencephalon, and particularly of its cortex, has given rise to a vast accumulation of knowledge, and yet even at moderately crude levels of analysis its major functions are still poorly understood. This has led to other types of approach to the problems of brain function. One has been the study of the interaction of individual cells, among small neuron populations, an approach exemplified by the study of learning and its neural correlates in Aplysia (e.g., see Castellucci et al., 1970; Kupfermann et al., 1970; Pinsker et al., 1970), and another has been the examination of lower vertebrate classes in an attempt to find the roots of the highly evolved brain functions and behaviors seen, for example, in rats and monkeys.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agranoff, B. W., Davis, R. E., and Brink, J. J., 1966, Chemical studies on memory fixation in goldfish, Brain Res. 1: 303.

    Google Scholar 

  • Andrew, R. J., 1974, Arousal and the causation of behaviour, Behaviour 51: 135.

    Google Scholar 

  • Ariëns Kappers, C. U., Huber, G. C., and Crosby, E. C., 1936, The Comparative Anatomy of the Nervous System of Vertebrates, Macmillan, New York.

    Google Scholar 

  • Aronson, L. R., 1948, Problems in the behavior and physiology of a species of african mouthbreeding fish (Tilapia macrocephala), Tr. N.Y. Acad. Sci. Ser. 2 2: 33.

    Google Scholar 

  • Aronson, L. R., 1968, Function of the teleostean forebrain, in: The Central Nervous System and Fish Behavior ( D. J. Ingle, ed.), pp. 107–125, University of Chicago Press, Chicago.

    Google Scholar 

  • Aronson, L. R., and Herberman, R., 1960, Persistence of a conditioned response in the cichlid fish Tilapia macrocephala after forebrain and cerebellar ablations, Anat. Rec. 138: 332.

    Google Scholar 

  • Aronson, L. R., and Kaplan, H., 1963, Forebrain function in avoidance conditioning, Am. Zool. 3: 483.

    Google Scholar 

  • Aronson, L. R., and Kaplan, H., 1965, Effect of forebrain ablation on the acquisition of a conditioned avoidance response in the teleost fish Tilapia macrocephala, Am. Zool. 5: 654.

    Google Scholar 

  • Bannister, L. H., 1973, Forebrain structure in Phoxinus phoxinus, a teleost of the cyprinid family, J. Hirnforsch. 14: 413.

    Google Scholar 

  • Beniuc, M., 1938, The roundabout path of the fighting fish (Betta splendens), Proc. Zool. Soc. London 108: 403.

    Google Scholar 

  • Bernstein, J. J., 1961a, Loss of hue discrimination in forebrain-ablated fish, Exp. Neurol. 3: 1.

    Google Scholar 

  • Bernstein, J. J., 1961b, Brightness discrimination following forebrain ablation in fish, Exp. Neurol. 3: 297.

    Google Scholar 

  • Bernstein, J. J., 1962, Role of the telencephalon in color vision in fish, Exp. Neurol. 6: 173.

    Google Scholar 

  • Bernstein, J. J., 1967, The regenerative capacity of the telencephalon of the goldfish and the rat, Exp. Neurol. 17: 44.

    Google Scholar 

  • Berwein, M., 1941, Beobachtungen und Versuche über das gesellige Leben von Elritzen, Z. Vergl. Physiol. 28: 402.

    Google Scholar 

  • Bethe, A., 1899, Die Locomotion des Haifisches (Scyllium) und ihre Beziehungen zu den einzelnen Gehirntheilen und zum Labyrinth, Pflügers Arch. 76: 70.

    Google Scholar 

  • Bianki, V. L., 1972, The hypothesis on the origin factors of the forebrain paired structure in the phylogenesis of the vertebrates, in: Cerebral Interhemispheric Relations ( J. Černáček and F. Podivinský, eds.), pp. 29–42, Publishing house of the Slovak Academy of Sciences, Bratislava.

    Google Scholar 

  • Bitterman, M. E., 1965, The evolution of intelligence, Sci. Am. 212 (1): 92.

    Google Scholar 

  • Boyd, E. S., and Gardner, L. C., 1962, Positive and negative reinforcement from intracranial stimulation of a teleost, Science 136: 648.

    Google Scholar 

  • Bruckmoser, P., and Dieringer, N., 1973, Evoked potentials in the primary and secondary projection areas of the forebrain in elasmobranchs, J. Comp. Physiol. 87: 65.

    Google Scholar 

  • Cain, D. P., 1974, The role of the olfactory bulb in limbic mechanisms, Psychol. Rev. 10: 654.

    Google Scholar 

  • Campbell, H. J., 1968, Peripheral self-stimulation as reward, Nature (London) 218: 104.

    Google Scholar 

  • Castellucci, V., Pinsker, H., Kupfermann, I., and Kandel, E. R., 1970, Neuronal mechanisms of habituation and dishabituation of the gill-withdrawal reflex in Aplysia, Science 167: 1745.

    Google Scholar 

  • Chauchard, A., and Chauchard, B., 1927, Recherches sur les localisations cérébrales chez les poissons, C. R. Soc. Biol. 184: 696.

    Google Scholar 

  • Clark, S. L., Chung, M. Y., Shine, L., and Clark, M. R., 1960, Responses in free swimming fishes to electrical stimulation of the cerebellum, Am. J. Anat. 106: 121.

    Google Scholar 

  • Cohen, D. H., Duff, T. A., and Ebbesson, S. O. E., 1973, Electrophysiological identification of a visual area in shark telencephalon, Science 182: 492.

    Google Scholar 

  • Crespi, L. P., 1944, Amount of reinforcement and level of performance, Psychol. Rev. 51: 341.

    Google Scholar 

  • Dart, R. A., 1920, A contribution to the morphology of the corpus striatum, J. Anat. 55: 1.

    Google Scholar 

  • Davis, R. E., Bright, P. J., and Agranoff, B. W., 1965, Effect of ECS and puromycin on memory in fish, J. Comp. Physiol. Psychol. 60: 162.

    Google Scholar 

  • Demski, L. S., and Gerald, J. W., 1972, Sound production evoked by electrical stimulation of the brain in toadfish (Opsanus beta), Anim. Behav. 20: 507.

    Google Scholar 

  • Demski, L. S., and Knigge, K. M., 1971, The telencephalon and hypothalamus of the bluegill (Lepomis macrochirus): Evoked feeding, aggressive and reproductive behavior with representative frontal sections, J. Comp. Neurol. 143: 1.

    Google Scholar 

  • Desmoulins, A., 1825, Anatomie des Systèmes Nerveux des Animaux Vertébrés Appliqué à la Physiologie et à la Zoologie, Méquignon-Marvis, Paris.

    Google Scholar 

  • Devitsina, G. V., 1973, On certain morphological and functional properties of the olfactory bulb of pike and burbot, Vestnik Moskovsk. Univ. 1: 10.

    Google Scholar 

  • Dewsbury, D. A., and Bernstein, J. J., 1969, Role of the telencephalon in performance of conditioned avoidance responses by goldfish, Exp. Neurol. 23: 445.

    Google Scholar 

  • Dizon, A. E., Horrall, R. M., and Hasler, A. D., 1973, Olfactory electroencephalographic responses of homing Coho salmon, Oncorhynchus kisutch, to water conditioned by conspecifics, U.S. Natl. Marine Fish. Serv. Fish. Bull. 71: 893.

    Google Scholar 

  • Douglas, R. J., and Pribram, K. H., 1969, Distraction and habituation in monkeys with limbic lesions, J. Comp. Physiol. Psychol. 69: 473.

    Google Scholar 

  • Döving, K. B., 1966, Efferent influence upon the activity of single neurons in the olfactory bulb of the burbot, J. Neurophysiol. 29: 675.

    Google Scholar 

  • Döving, K. B., and Gemne, G., 1965, Electrophysiological and histological properties of the olfactory tract of the burbot (Lota lota L.), J. Neurophysiol. 28: 139.

    Google Scholar 

  • Döving, K. B., and Gemne, G., 1966, An electrophysiological study of the efferent olfactory system in the burbot, J. Neurophysiol. 29: 665.

    Google Scholar 

  • Döving, K. B., and Hyvärinen, J., 1969, Afferent and efferent influences on the activity pattern of single olfactory neurons, Acta Physiol. Scand. 75: 111.

    Google Scholar 

  • Ebbesson, S. O. E., and Heimer, L., 1968, Olfactory bulb projections in two species of sharks (Galeocerdo cuvieri and Ginglymostoma cirratum), Anat. Rec. 160: 469.

    Google Scholar 

  • Ebbesson, S. O. E., and Heimer, L., 1970, Projections of the olfactory tract fibres in the nurse shark (Ginglymostoma cirratum), Brain Res. 17: 47.

    Google Scholar 

  • Ebbesson, S. O. E., Jane, J. A., and Schroeder, D. M., 1972, A general overview of major interspecific variations in thalamic organisation, Brain Behav. Evol. 6: 92.

    Google Scholar 

  • Eidelberg, E., and Stein, D. G., 1974, Functional recovery after lesions of the nervous system, Neurosci. Res. Prog. Bull. 12: 191.

    Google Scholar 

  • Enger, P. S., 1957, The electroencephalogram of the codfish (Gadus callarias), Acta Physiol. Scand. 39: 55.

    Google Scholar 

  • Farr, E. J., and Savage, G. E., 1978, First- and second-order conditioning in the goldfish and their relation to the telencephalon, Behav. Biol. 22: 50.

    Google Scholar 

  • Ferrier, D., 1876, The Functions of the Brain, Smith-Elder, London.

    Google Scholar 

  • Fiedler, K., 1964, Versuche zur Neuroethologie von Lippfischen und Sonnenbarschen, Verh. Deutsch. Zool. Gesell. Kiel. 28: 569.

    Google Scholar 

  • Fiedler, K., 1967, Verhaltenswirksame Strukturen in Fischgehirn, Verh. Deutsch. Zool. Gesell. Heidelberg 31: 602.

    Google Scholar 

  • Finger, T. E., 1975, The distribution of the olfactory tracts in the bullhead catfish, Ictalurus nebulosas, J. Comp. Neurol. 161: 125.

    Google Scholar 

  • Flood, N. B., and Overmier, J. B., 1971, Effects of telencephalic and olfactory lesions on appetitive learning in goldfish, Physiol. Behav. 6: 35.

    Google Scholar 

  • Flood, N. B., Overmier, J. B., and Savage, G. E., 1976, Teleost telencephalon and learning: An interpretive review of data and hypotheses, Physiol. Behav. 16: 783.

    Google Scholar 

  • Fortuyn, J. D., 1961, Topographical relations in the telencephalon of the sunfish, Eupomotis gibbosus, J. Comp. Neurol. 116: 249.

    Google Scholar 

  • Frank, A. H., Flood, N. B., and Overmier, J. B., 1972, Reversal learning in forebrain ablated and olfactory tract sectioned teleost, Carassius auratus, Psychon. Sci. 26: 149.

    Google Scholar 

  • French, G. M., and Harlow, H. F., 1955, Locomotor reaction decrement in normal and brain-damaged monkeys, J. Comp. Physiol. Psychol. 48: 496.

    Google Scholar 

  • Gloor, P., 1960, The amygdala, in: Handbook of Physiology, Sect. 1, Vol. 2: Neurophysiology ( J. Field, H. Magoun, and V. Hall, eds.), pp. 1395–1420, American Physiological Society, Washington, D.C.

    Google Scholar 

  • Godet, R., Bert, J., and Collomb, H., 1964, Apparition de la réaction d’éveil télencéphalique chez Protopterus annectens et cycle biologique, C. R. Soc. Biol. 158: 146.

    Google Scholar 

  • Graeber, R. C., Schroeder, D. M., Jane, J. A., and Ebbesson, S. O. E., 1972, The importance of telencephalic structures in visual discrimination learning in nurse sharks, Proc. Soc. Neurosci. 2nd Annu. Meet., pp. 8–11.

    Google Scholar 

  • Granit, R., 1955, Centrifugal and antidromic effects on ganglion cells of the retina, J. Neurophysiol. 18: 388.

    Google Scholar 

  • Grastyán, E., Lissak, K., Madarasz, I., and Donhoffer, H., 1959, Hippocampal electrical activity during the development of conditioned reflexes, EEG Clin. Neurophysiol. 11: 409.

    Google Scholar 

  • Gray, J. A., 1975, Elements of a Two-Process Theory of Learning, Academic Press, New York.

    Google Scholar 

  • Grimm, R. J., 1960, Feeding behavior and electrical stimulation of the brain of Carassius auratus, Science 131: 162.

    Google Scholar 

  • Gruberg, E. R., and Ambros, V. R., 1974, A forebrain visual projection in the frog (Rana pipiens), Exp. Neurol. 44: 187.

    Google Scholar 

  • Guselnikov, V. I., Onufrieva, M. I., and Supin, A. Y., 1964, Projection of visual, olfactory and lateral line receptors in the fish brain, Fiziol. Zh. SSSR im. L. M. Sechenov 50: 1104.

    Google Scholar 

  • Guselnikov, V. I., Pivovarov, A. S., and Tsitolovsky, L. E., 1974, Synaptic processes in the neurones of the forebrain general cortex of the turtle to visual stimulation, Zhurnal Vyssh. Neru. Devatel. I. P. Pavlova 24: 800.

    Google Scholar 

  • Hainsworth, F. R., Overmier, J. B., and Snowdon, C. T., 1967, Specific and permanent deficits in instrumental avoidance responding following forebrain ablation in the goldfish, J. Comp. Physiol. Psychol. 63: 111.

    Google Scholar 

  • Hale, E. B., 1956, Social facilitation and forebrain function in maze performance of green sunfish, Lepomis cyanellus, Physiol. Zool. 29: 93.

    Google Scholar 

  • Hallowitz, R. A., Woodward, D. J., and Demski, L. S., 1971, Forebrain activation of single units in preoptic area of sunfish, Comp. Biochem. Physiol. 40A: 733.

    Google Scholar 

  • Hara, T. J., 1970, An electrophysiological basis for olfactory discrimination in homing salmon: A review, J. Fish. Res. Bd. Can. 27: 565.

    Google Scholar 

  • Hara, T. J., and Gorbman, A., 1967, Electrophysiological studies of the olfactory system of the goldfish, Carassius auratus L. 1. Modification of the electrical activity of the olfactory bulb by other central nervous structures, Comp. Biochem. Physiol. 21: 185.

    Google Scholar 

  • Hara, T. J., Ueda, K., and Gorbman, A., 1965, Electroencephalographic studies of homing salmon, Science 149: 884.

    Google Scholar 

  • Hara, T. J., Freese, M., and Scott, K. R., 1973, Spectral analysis of olfactory bulbar responses in rainbow trout, Jpn.J. Physiol. 23: 325.

    Google Scholar 

  • Hebb, D. O., 1949, The Organization of Behavior, Wiley, New York.

    Google Scholar 

  • Herrick, C. J., 1922, Functional factors in the morphology of the forebrain of fishes, Libro en Honor de S. Ramón y Cajal 1: 143.

    Google Scholar 

  • Herrick, C. J., 1948, The Brain of the Tiger Salamander, University of Chicago Press, Chicago.

    Google Scholar 

  • Hinde, R. A., 1970, Animal Behaviour, 2nd ed., McGraw-Hill, New York.

    Google Scholar 

  • Hosch, L., 1936, Untersuchungen über Grosshirnfunktion der Elritze (Phoxinus laevis) und des Gründlings (Gobio fluviatilis), Zool. Jahrb. Abt. Zool. Physiol. 57: 57.

    Google Scholar 

  • Ingle, D. J., 1965a, Behavioral effects of forebrain lesions in goldfish, Proc. 73rd Am. Psychol. Assoc., p. 143.

    Google Scholar 

  • Ingle, D. J., 1965b, The use of the fish in neuropsychology, Persp. Biol. Med. 8: 241.

    Google Scholar 

  • Ingle, D. J., and Campbell, A., 1977, Interocular transfer of visual discriminations in goldfish after selective commissure lesions, J. Comp. Physiol Psychol. 91: 327.

    Google Scholar 

  • Ito, H., 1973, Normal and experimental studies on synaptic patterns in the carp telencephalon, with special reference to the secondary olfactory termination, J. Hirnforsch. 14: 237.

    Google Scholar 

  • Janzen, W., 1933, Untersuchungen über Grosshirnfunktion des Goldfisches (Carassius auratus), Zool. Jahrb. Abt. Zool. Physiol. 52: 591.

    Google Scholar 

  • Jenkins, T. N., Warner, L. H., and Warden, C. J., 1926, Standard apparatus for the study of animal motivation, J. Comp. Psychol. 6: 361.

    Google Scholar 

  • John, E. R., 1967, Mechanisms of Memory, Academic Press, New York.

    Google Scholar 

  • Johnston, J. B., 1911, The telencephalon of selachians, J. Comp. Neurol. 21: 1.

    Google Scholar 

  • Kandel, E. R., 1964, Electrical properties of hypothalamic neuroendocrine cells, J. Gen. Physiol. 47: 691.

    Google Scholar 

  • Kaplan, H., and Aronson, L. R., 1967, Effect of forebrain ablation on the performance of a conditional avoidance response in the teleost fish, Tilapia macrocephala, Anim. Behav. 15: 438.

    Google Scholar 

  • Karamian, A. I., 1956, Evolution of the Function of the Cerebellum and Cerebral Hemispheres, Megdiz, Leningrad (transí, by Israel Program for Scientific Translations, Jerusalem, 1962 ).

    Google Scholar 

  • Karamian, A. I., Veselkin, N. P., Belekhova, M. G., and Zagorulko, T. M., 1966, Electrophysiological characteristics of tectal and thalamo-cortical divisions of the visual system in lower vertebrates, J. Comp. Neurol. 127: 559.

    Google Scholar 

  • Karamian, A. I., Malyukova, I. V., and Sergeev, B. F., 1967, The participation of the forebrain of bony fish in the creation of complicated conditioned reflexes and general behavioural reactions, in: Behaviour and Reception of Fishes, pp. 109–114, Ichthyological Committee of the Ministry of Fisheries, Nauka, Moscow.

    Google Scholar 

  • Karamian, A. I., Agayan, A. L., and Veselkin, N. P., 1973, The evoked potentials in various regions of the brain of lamprey during stimulation of the dorsal column of the spinal cord, Biol. Zh. Armenii 26: 56.

    Google Scholar 

  • Kholodov, Y. A., 1960, Simple and complex food-obtaining conditioned reflexes in normal fish and in fish after removal of the forebrain, Zh. Vyssh. Nerv. Devatel. I. P. Pavlova 5: 201.

    Google Scholar 

  • Kumakura, S., 1927, Versuche an Goldfischen, denen beide Hemisphären des Grosshirns extirpiert worden waren, Nagoga J. Med. Sci. 3: 19.

    Google Scholar 

  • Kupfermann, I., Castellucci, V., Pinsker, H., and Kandel, E. R., 1970, Neuronal correlates of habituation and dishabituation of the gill-withdrawl reflex in Aplysia, Science 167: 1743.

    Google Scholar 

  • Laming, P. R., 1976, Physiological aspects of arousal in the goldfish, Carassius auratus, Ph.D. thesis, University of London.

    Google Scholar 

  • Lindsley, D. B., Schreiner, L. H., Knowles, W. B., and Magoun, H. W., 1950, Behavioral and EEG changes following chronic brain stem lesions in the cat, EEG Clin. Neurophysiol. 2: 483.

    Google Scholar 

  • Loeb, J., 1891, Über den Anteil des Hörnerven an den nach Gehirn Verletzung auftretenden Zwangsbewegungen, Zwangslagen und assoziierten Stellungsänderungen der Bulbi und Extremitäten, Pflügers Arch. 50: 66.

    Google Scholar 

  • Macey, M. J., Pickford, G. E., and Peter, R. E., 1974, Forebrain localization of the spawning reflex response to exogenous neurohypophysial hormones in the killifish, Fundulus heteroclitus, J. Exp. Zool. 190: 269.

    Google Scholar 

  • Mackworth, J. F., 1969, Vigilance and Habituation, Penguin Books, Harmondsworth, U.K.

    Google Scholar 

  • Mackworth, J. F., 1970, Vigilance and Attention, Penguin Books, Harmondsworth, U. K.

    Google Scholar 

  • Maetz, J., and Juien, M., 1961, Action of neurohypophyseal hormones on the sodium fluxes of a freshwater teleost, Nature (London) 189: 152.

    Google Scholar 

  • Malmo, R. B., 1942, Interference factors in delayed response in monkeys after removal of frontal lobes, J. Neurophysiol. 5: 295.

    Google Scholar 

  • Maluikina, G. A., and Flerova, G. N., 1960, New data on the functions of the fore-brain in teleosts, Zh. Obshchei Biol. 21: 381.

    Google Scholar 

  • Maluikina, G. A., and Vornovitski, E. G., 1966, Some problems of physiology of visual analysers, Vopr. Ikhtiol. 6: 140.

    Google Scholar 

  • Malyukova, I. V., 1964, Effect of electrical stimulation and partial coagulation of the forebrain (prosencephalon) and valvula cerebelli on the food-obtaining conditional reflexes in fishes, Zh. Vyssh. Nerv. Devatel. I. P. Pavlova 14: 895.

    Google Scholar 

  • Mark, R. F., 1966, The tectal commissure and interocular transfer of pattern discrimination in cichlid fish, Exp. Neurol. 16: 215.

    Google Scholar 

  • Marks, W. B., 1965, Visual pigments of single goldfish cones, J. Physiol. (London) 178: 14.

    Google Scholar 

  • Maron, K., 1963, Endbrain regeneration in Lebistes reticulatus, Folia Biol. 11: 1.

    Google Scholar 

  • McCleary, R. A., 1960, Type of response as a factor in interocular transfer in fish, J. Comp. Physiol. Psychol. 53: 311.

    Google Scholar 

  • McCleary, R. A., and Bernstein, J. J., 1959, A unique method for control of brightness cues in study of color vision in fish, Physiol. Zool. 32: 284.

    Google Scholar 

  • Meader, R. G., 1939, Notes on the functions of the forebrain in teleosts, Zoologica 24: 11.

    Google Scholar 

  • Meesters, A., 1940, Über die Organization des Gesichtsfeldes der Fische, Z. Tierpsychol. 4: 84.

    Google Scholar 

  • Moruzzi, G., 1969, Sleep and instinctive behaviour, Arch. Ital. Biol. 107: 175.

    Google Scholar 

  • Moruzzi, G., and Magoun, E. W., 1949, Brain-stem reticular formation and activation of the EEG, EEG Clin. Neurophysiol. 1: 455.

    Google Scholar 

  • Mowrer, O. H., 1947, On the dual nature of learning—A re-interpretation of “conditioning” and “problem-solving,” Harvard Educ. Rev. 17: 102.

    Google Scholar 

  • Myers, R. E., 1965, The neocortical commissures and inter hemispheric transmission of information, in: Functions of the Corpus Callosum (G. Ettlinger, ed.), pp. 1–, CIBA Foundation Study Group 20, Churchill, London.

    Google Scholar 

  • Nieuwenhuys, R., 1959, The structure of the telencephalon of the teleost Gasterosteus aculeatus, Proc. Kon. Ned. Akad. Wetensch. Amsterdam Ser. C 62: 341.

    Google Scholar 

  • Nieuwenhuys, R., 1967, Comparative anatomy of olfactory centres and tracts, Prog. Brain Res. 23: 1.

    Google Scholar 

  • Noble, G. K., 1936, The function of the corpus striatum in the social behavior of fishes, Anat. Rec. 64: 34 (Suppl.3).

    Google Scholar 

  • Nolte, W., 1933, Experimented Untersuchungen zum Problem der Lokalisation des Assoziations- vermogens im Fischgehirn, Z. Vergl. Physiol. 18: 255.

    Google Scholar 

  • Olds, J., 1958, Self-stimulation experiments and differentiated reward systems, in: Reticular Formation of the Brain ( H. H. Jasper, L. D. Proctor, R. S. Knighton, W. C. Noshay, and R. T. Costello, eds.), pp. 671–687, Little, Brown, Boston.

    Google Scholar 

  • Olton, D. S., and Isaacson, R. L., 1968, Hippocampal lesions and active avoidance, Physiol. Behav. 3: 719.

    Google Scholar 

  • Oshima, K., and Gorbman, A., 1966, Olfactory responses in the forebrain of goldfish and their modification by thyroxine treatment, Gen. Comp. Endocrinol. 7: 398.

    Google Scholar 

  • Oshima, K., Hahn, W. E., and Gorbman, A., 1969, Olfactory discrimination of natural waters by salmon, J. Fish. Res. Bd. Can. 26: 2111.

    Google Scholar 

  • Otis, L. S., Cerf, J. A., and Thomas, G. J., 1957, Conditioned inhibition of respiration and heart rate in the goldfish, Science 126: 263.

    Google Scholar 

  • Overmier, J. B., and Curnow, P. F., 1969, Classical conditioning, pseudoconditioning, and sensitization in “normal” and forebrainless goldfish, J. Comp. Physiol. Psychol. 68: 193.

    Google Scholar 

  • Overmier, J. B., and Flood, N. L., 1969, Passive avoidance in forebrain ablated teleost fish, Carassius auratus, Physiol Behav. 4: 79.

    Google Scholar 

  • Overmier, J. B., and Gross, D., 1974, Effects of telencephalic ablation upon nest-building and avoidance behaviors in East African mouthbreeding fish, Tilapia mossambica, Behav. Biol. 12: 211.

    Google Scholar 

  • Overmier, J. B., and Savage, G. E., 1974, Effects of telencephalic ablation on trace classical conditioning of heart rate in goldfish, Exp. Neurol. 42: 339.

    Google Scholar 

  • Overmier, J. B., and Starkman, N., 1974, Transfer of control of avoidance behavior in normal and telencephalon ablated goldfish (Carassius auratus), Physiol. Behav. 12: 605.

    Google Scholar 

  • Parker, G. H., 1910, Olfactory reactions in fishes, J. Exp. Zool. 8: 535.

    Google Scholar 

  • Parker, G. H., 1911, The olfactory reactions of the common Killifish, Fundulus heteroclitus (Linn.), J. Exp. Zool. 10: 1.

    Google Scholar 

  • Parker, G. H., 1922, Smell, Taste, and Allied Senses in the Vertebrates, Lippincott, Philadelphia.

    Google Scholar 

  • Pavlovskii, E. N., 1964, Techniques for the Investigation of Fish Physiology, Israel Program for Scientific Translations, Jerusalem.

    Google Scholar 

  • Peeke, H. V., Peeke, S. C., and Williston, J. S., 1972, Long-term memory deficits for habituation of predatory behavior in forebrain ablated goldfish (Carassius auratus), Exp. Neurol. 36: 288.

    Google Scholar 

  • Peter, R. E., and Gorbman, A., 1968, Some afferent pathways to the preoptic nucleus of the goldfish, Neuroendocrinology 3: 229.

    Google Scholar 

  • Piddington, R. W., 1971, Central control of auditory input in the goldfish. 1. Effect of shocks to the midbrain, J. Exp. Biol. 55: 569.

    Google Scholar 

  • Pinsker, H., Kupfermann, I., Castellucci, V., and Kandel, E. R., 1970, Habituation and dishabituation of the gill-withdrawl reflex in Aplysia, Science 167: 1740.

    Google Scholar 

  • Platt, C. J., Bullock, T. H., Czéh, G., Kovaĉević, N., Konjević, Dj., and Gojković, M., 1974, Comparison of electroreceptor, mechanoreceptor, and optic evoked potentials in the brain of some rays and sharks, J. Comp. Physiol. 95: 323.

    Google Scholar 

  • Polimanti, O., 1911, Contributi alia fisiologia del sistema nervoso centrale e del movimento dei pesci. I. Selacoidei, Zool. Jahrb. Abt. Zool. Physiol. 30: 473.

    Google Scholar 

  • Polimanti, O., 1912, Contributi alia fisiologia del sistema nervoso centrale e del movimento dei pesci. III. Teleosti. Zool. Jahrb. Abt. Zool. Physiol. 32: 367.

    Google Scholar 

  • Pribram, K. H., and McGuinness, D., 1975, Arousal, activation and effort in the control of attention, Psychol. Rev. 82: 116.

    Google Scholar 

  • Regestein, Q. R., 1968, Some monocular emotional effects of unilateral hypothalamic lesions in goldfish, in: The Central Nervous System and Fish Behavior ( D. J. Ingle, ed.), pp. 139–144, University of Chicago Press, Chicago.

    Google Scholar 

  • Reisinger, L., 1915, Die zentrale Lokalisation des Gleichgewichtssinnes der Fische, Biol. Zentr. 36: 472.

    Google Scholar 

  • Rescorla, R. A., and Solomon, R. S., 1967, Two-process learning theory: Relationships between Pavlovian conditioning and instrumental learning, Psychol. Rev. 74: 151.

    Google Scholar 

  • Richardson, J. S., 1973, The amygdala: historical and functional analysis, Acta Neurobiol. Exp. 33: 623.

    Google Scholar 

  • Rizzolo, A., 1929, A study of equilibrium in the smooth dogfish (Galeus canis Mitchill) after removal of different parts of the brain, Biol. Bull. 57: 245.

    Google Scholar 

  • Rosvold, H. E., Mirsky, A. F., and Pribram, K. H., 1954, Influence of amygdalectomy on social behavior in monkeys, J. Comp. Physiol. Psychol. 47: 173.

    Google Scholar 

  • Routtenberg, A., 1968, The two-arousal hypothesis: Reticular formation and limbic system, Psychol. Rev. 75: 51.

    Google Scholar 

  • Russell, E. S., 1931, Detour experiments with sticklebacks (Gasterosteus aculeatus), J. Exp. Biol. 8: 393.

    Google Scholar 

  • Sanders, F. K., 1940, Second-order olfactory and visual learning in the optic tectum of the goldfish, J. Exp. Biol 17: 416.

    Google Scholar 

  • Satou, M., 1974, Electrical responses at various levels of the olfactory pathway in Himé salmon, Oncorhynchus nerka, Jpn. J. Physiol. 24: 389.

    Google Scholar 

  • Savage, G. E., 1968a, Function of the forebrain in the memory system of fish, in: The Central Nervous System and Fish Behavior ( D. J. Ingle, ed.), pp. 127–138, University of Chicago Press, Chicago.

    Google Scholar 

  • Savage, G. E., 1968b, Temporal factors in avoidance learning in normal and forebrainless goldfish (Carassius auratus), Nature (London) 218: 1168.

    Google Scholar 

  • Savage, G. E., 1969a, Telencephalic lesions and avoidance behaviour in the goldfish (Carassius auratus), Anim. Behav. 17: 362.

    Google Scholar 

  • Savage, G. E., 1969b, Some preliminary observations on the role of the telencephalon in food-reinforced behaviour in the goldfish, Carassius auratus, Anim. Behav. 17: 760.

    Google Scholar 

  • Savage, G. E., 1971, Behavioural effects of electrical stimulation of the telencephalon of the goldfish, Carassius auratus, Anim. Behav. 19: 661.

    Google Scholar 

  • Savage, G. E., 1979, Interocular transfer and commissure function in lower vertebrates, with special reference to fish, in: Structure and Function of the Cerebral Commissures (I. S. Russell, M. W. van Hof, and G. Berlucchi, eds.), p. 34„ Macmillan, New York.

    Google Scholar 

  • Savage, G. E., and Roberts, M. G., 1975, Behavioral effects of electrical stimulations of the hypothalamus of the goldfish (Carassius auratus), Brain Behav. Evol. 12: 42

    Google Scholar 

  • Savage, G. E., and Swingland, I. R., 1969, Postively reinforced behaviour and the forebrain in goldfish, Nature (London) 221: 878.

    Google Scholar 

  • Schadé, J. P., 1959, Bilateral synchrony and arousal in EEG of fish, EEG Clin. Neurophysiol. 11: 613.

    Google Scholar 

  • Schadé, J. P., and Weiler, I. J., 1959, Electroencephalographic patterns of the goldfish (Carassius auratus), J. Exp. Biol. 36: 435.

    Google Scholar 

  • Scharrer, E., 1928, Die Lichtempfindlichkeit blinder Elritzen, Z. Vergl. Physiol. 7: 1.

    Google Scholar 

  • Schiller, P. H., 1948, Delayed responses in minnows, J. Comp. Physiol. Psychol. 41: 233.

    Google Scholar 

  • Schnitzlein, H. N., 1964, Correlation of habit and structure in the fish brain, Am. Zool. 4: 21.

    Google Scholar 

  • Schnitzlein, H. N., and Crosby, E. C., 1967, The telencephalon of the lungfish, Protopterus, J. Hirnforsch. 9: 105.

    Google Scholar 

  • Schönherr, J., 1955, Über die Abhängigkeit der Instinkthandlungen vom Vorderhirn und Zwischenhirn (Epiphyse) bei Gasterosteus aculeatus L., Zool. Jahrb. Abt. Zool. Physiol. 65: 357.

    Google Scholar 

  • Schroeder, D. M., and Ebbesson, S. O. E., 1974, Non-olfactory telencephalic afferents in the Nurse shark (Ginglymostoma cirratum), Brain Behav. Evol. 9: 121.

    Google Scholar 

  • Segaar, J., 1965, Behavioural aspects of degeneration and regeneration in fish brain, Prog. Brain Res. 14: 143.

    Google Scholar 

  • Segaar, J., and Nieuwenhuys, R., 1963, New etho-physiological experiments with male Gasterosteus aculeatus, Anim. Behav. 11: 331.

    Google Scholar 

  • Segura, E. T., 1969, Effect of forebrain stimulation on blood pressure, heart rate, and ST-T complex in toads, Am. J. Physiol. 217: 1149.

    Google Scholar 

  • Shapiro, S. M., 1965, Interocular transfer of pattern discrimination in the goldfish, Am. J. Physiol. 78: 21.

    Google Scholar 

  • Shapiro, S. M., Schuckman, H., Sussman, D., and Tucker, A. M., 1974, Effect of telencephalic lesions on the gill cover response of Siamese fighting fish, Physiol. Behav. 13: 749.

    Google Scholar 

  • Shashoua, V. E., 1970, RNA metabolism in goldfish brain during acquisition of new behavioral patterns, Proc. Natl. Acad. Sci. USA 65: 160.

    Google Scholar 

  • Shashoua, V. E., 1972, A multistage transduction model for information processing in the nervous system, Int. J. Neurosci. 3: 299.

    Google Scholar 

  • Sheldon, R. E., 1912, The olfactory tracts and centers in teleosts, J. Comp. Neurol. 22: 177.

    Google Scholar 

  • Sherrington, C. S., 1906, The Integrative Action of the Nervous System, Yale University Press, New Haven (reprinted 1961 ).

    Google Scholar 

  • Sokolov, E. N., 1963, Perception and the Conditioned Reflex, Pergamon Press, Oxford.

    Google Scholar 

  • Steiner, J., 1888, Die Fische, in: Die Functionen des Zentralnervensystems und ihre Phlogenese, Abt. 2., Vieweg und Sohn, Braunschweig.

    Google Scholar 

  • Strieck, K., 1925, Untersuchungen über den Geruchs- und den Geschmackssinn der Elritze, Z. Vergl. Physiol. 2: 122.

    Google Scholar 

  • Sutherland, N. S., 1969, Shape discrimination in the rat, octopus and goldfish: A comparative study, J. Comp. Physiol. Psychol. 67: 160.

    Google Scholar 

  • Ten Cate, J., 1935, Physiologie des Zentralnervensystems der Fische, Ergebn. Biol. 11: 335.

    Google Scholar 

  • Troschicheva, P. V., 1974, The role of the forebrain in visual reception and food reflexes of two species of bullheads (Cottidae) from the Baerents Sea, Vopr. Ikhtiol. AN SSSR 14: 903.

    Google Scholar 

  • Uretsky, E., and McCleary, R. A., 1969, Effect of hippocampal isolation on retention, J. Comp. Physiol. Psychol. 68: 1.

    Google Scholar 

  • Veselkin, N. P., and Kovaĉević, N., 1973, Non-olfactory afferent projections of the telencephalon of elasmobranchii, J. Evol. Biochem. Physiol. 9: 585.

    Google Scholar 

  • Voronin, L. G., and Guselnikov, V. I., 1959, Some comparative physiological data on the biological reactions of the brain, Zh. Vyssh. Nerv. Devatel. I. P. Pavlova 9: 398.

    Google Scholar 

  • Voronin, L. G., Guselnikov, K. G., Guselnikov, V. I., and Supin, A. J., 1968, On the problem of the evolution of the Vertebrate afferent systems, Prog. Brain Res. 22: 541.

    Google Scholar 

  • Vulpian, A., 1866, Leçons sur la Physiologie Générale et Comparée du Système Nerveux, Germer-Baillière, Paris.

    Google Scholar 

  • Warren, J. M., 1961, The effect of telencephalic injuries on learning by paradise fish, Macropodus opercularis, J. Comp. Physiol Psychol. 54: 130.

    Google Scholar 

  • Weinberg, H., 1972, The contingent negative variation: Its relation to feedback and expectant attention, Neuropsychology 10: 299.

    Google Scholar 

  • Westerman, R. A., 1965, Specificity in regeneration of optic and olfactory pathways in teleost fish, in: Studies in Physiology ( D. R. Curtis and A. K. Mclntyre, eds.), pp. 263–269, Springer, Berlin.

    Google Scholar 

  • Wright, D. E., 1978, Effects of electrical stimulation of the brain of the goldfish, Carassius auratus, Ph.D. thesis, University of London.

    Google Scholar 

  • Yager, D., 1967, Behavioral measures and theoretical analysis of spectral sensitivity and spectral saturation in the goldfish, Carassius auratus, Vision Res. 7: 707.

    Google Scholar 

  • Yeo, C. H., and Savage, G. E,, 1975, The tectal commissure and interocular transfer of a shape discrimination in the goldfish, Exp. Neurol. 49: 291.

    Google Scholar 

  • Yeo, C. H., and Savage, G. E., 1976, Mesencephalic and diencephalic commissures and interocular transfer in the goldfish, Exp. Neurol. 53: 51.

    Google Scholar 

  • Zagorulko, T. M., 1965, Interaction between the forebrain and visual centres of the midbrain in teleosts and amphibians, Zh. Evol. Biokhim. Fiziol. 1: 449.

    Google Scholar 

  • Zornetzer, S. F., Chronister, R. B., and Ross, B., 1973, The hippocampus and retrograde amnesia: Localization of some positive and negative memory disruptive sites, Behav. Biol. 8: 507.

    Google Scholar 

  • Zucker, I., and McCleary, R. A., 1964, Perseveration in septal cats, Psychon. Sci. 1: 387.

    Google Scholar 

  • Zunini, G., 1954, Researches on fish’s learning, Arch. Neerl. Zool. 10: L27 (Suppl.2).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Savage, G.E. (1980). The Fish Telencephalon and Its Relation to Learning. In: Ebbesson, S.O.E. (eds) Comparative Neurology of the Telencephalon. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2988-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2988-6_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-2990-9

  • Online ISBN: 978-1-4613-2988-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics