Advertisement

Historical Background

  • Robert B. McComb
  • George N. BowersJr.
  • Solomon Posen

Abstract

During the last quarter of the 19th century and the early years of this century, several writers stressed the interconvertibility of organic and inorganic phosphate in living animals. Dalton1 pointed out that although compounds rich in organic phosphate comprise a significant part of the diet, none is found in excreta. The presence of phosphate in urine was attributed to the “oxidation” of organic phosphates. LeClerc and Cook2 measured urinary phosphate in dogs and rabbits and found identical values regardless of whether dietary phosphate consisted of wheat bran, egg yolk, or inorganic phosphate salts. Mathison*3 incubated glycerophosphate for “weeks” at 39°C with a number of enzymes, such as trypsin, pepsin, and fresh pancreatic juice, and found no hydrolysis. However, when “Subject M, aged 25” ingested glycerophosphoric acid, a prompt increase was noted in urinary inorganic phosphate.3 Gregersen4 showed that rats fed a synthetic diet containing inorganic phosphate could use this material to build up organic compounds. Fingerling6 demonstrated the same phenomenon in ducks. Several other groups7–9 showed that ingestion or injection of organic phosphate esters led to an increase in the excretion of inorganic phosphate in the urine. While it was generally realized that these substances were extremely stable in vitro,3,8–10 no particular hydrolytic enzyme was identified to account for the in vivo effects. It appears that many of the early workers believed that a lipase was responsible for the hydrolysis of phosphate esters.11

Keywords

Alkaline Phosphatase Phosphatase Activity Alkaline Phosphatase Activity Historical Background Organic Phosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dalton, J. C, A Treatise on Human Physiology, 6th ed., pp. 51 and 103, Henry C. Lea, Philadelphia, 1875.Google Scholar
  2. 2.
    LeGerc, J. A., and Cook, F. G, Metabolism experiments with organic and inorganic phosphorus, J. Biol Chem., 2, 203, 1906.Google Scholar
  3. 3.
    Mathison, G. C., The output of organic phosphorus in urine, Biochem. J4, 274, 1909.Google Scholar
  4. 4.
    Gregersen, J. P., Untersuchungen über den Phosphorstoffwechsel, Z. Physiol. Chem., 71, 49, 1911.CrossRefGoogle Scholar
  5. 5.
    Obituary, Gordon Clunies McKay Mathison, Med. J. Aust., 1, 567, 1915.Google Scholar
  6. 6.
    Fingerling, G., Die Bildung von organischen Phosphorverbindungen aus anorganischen Phosphaten, Biochem. Z., JS, 448, 1912.Google Scholar
  7. 7.
    Bergmann, W., Über die Ausscheidung der Phosphorsaüre beim Fleisch und Pflanzenfresser, Arch. Exp. Pathol. Pharmakol., 47, 77, 1902.Google Scholar
  8. 8.
    Jordan, W. H., Hart, E. B., and Patten, A. J., A study of the metabolism and physiological effects of certain phosphorus compounds with milch cows, Am. J. Physiol., 16, 268, 1906.Google Scholar
  9. 9.
    Mendel, L. B., and Underhill, F. P., Experiments on the physiological action and metabolism of anhydro-oxymethylene-diphosphoric acid (phytic acid), Am,.J. Physiol., 1 7, 75, 1906/1907.Google Scholar
  10. 10.
    Plimmer, R. H. A., and Bayliss, W. M., The separation of phosphorus from caseinogen by the action of enzymes and alkali, J. Physiol., 33, 439, 1906.Google Scholar
  11. 11.
    Plimmer, R. H. A., The metabolism of organic phosphorus compounds: Their hydrolysis by the action of enzymes, Biochem. J., 7, 43, 1913.Google Scholar
  12. 12.
    Tammann, G., Über die Schicksale des Schwefels beim Keimen der Erbsen, Z. Physiol. Chem., 9, 416, 1885.Google Scholar
  13. 13.
    Milroy, T. H., Über die Eiweiss-Verbindungen der Nucleinsäure und Thyminsaure and ihre Beziehung zu den Nucleinen und Paranucleinen, Z. Physiol. Chem., 22, 307, 1896.CrossRefGoogle Scholar
  14. 14.
    Iwanow, L., Über die Umwandlungen des Phosphors beim Keimen der Wicke, Ber. Dtsch. Bot. Ges., 20, 366, 1902.Google Scholar
  15. 15.
    Zaleski, W., Beiträge zur Verwandlung des Eiweissphosphors in den Pflanzen, Ber. Dtsch. Bot. Ges., 20, 426, 1902.Google Scholar
  16. 16.
    Hart, E. B., and Andrews, W. H., The status of phosphorus in certain food materials and animal by-products, with special reference to the presence of inorganic forms, Am. Chem. J., 30, 470, 1903.Google Scholar
  17. 17.
    Araki, T., Über enzymatische Zersetzung der Nucleinsäure, Z. Physiol. Chem., 38, 84, 1903.CrossRefGoogle Scholar
  18. 18.
    Suzuki, U., Yoshimura, K., and Takaishi, M., Über ein Enzym “Phytase” das “Anhydro-oxy- methylen-diphosphorsäure” spaltet, Bull. Coli Agric. Tokyo Imp. Univ., 7, 503, 1907.Google Scholar
  19. 19.
    Suzuki, Umetaro (1872-1943), in: Japan Biographical Encyclopedia, 1st ed. ( Shiba, T., and Takagi, S., eds.), Rengo Press, Tokyo, 1958.Google Scholar
  20. 20.
    McCollum, E. V., and Hart, E. B., On the occurrence of a phy tinsplitting enzyme in animal tissues, J. Biol. Chem., 4, 497, 1908.Google Scholar
  21. 21.
    Harden, A., and Young, W. J., The alcoholic ferment of yeast juice. III. The function of phosphates in the fermentation of glucose by yeast juice, Proc. R. Soc. London Ser. B, 80, 299, 1908.CrossRefGoogle Scholar
  22. 22.
    Levene, P. A., and Medigreceanu, F., On nucleases, Biol. Chem., 9, 399, 1911.Google Scholar
  23. 23.
    Grosser, P., and Husler, J., Über das Vorkommen einer Glycerophosphotase in tierischen Organen, Biochem. Z39, 1, 1912.Google Scholar
  24. 24.
    Von Euler, H., Verhalten der Kohlenhydratphosphosäure Ester im Tierkörper, Z. Physiol. Chem., 79, 375, 1912.CrossRefGoogle Scholar
  25. 25.
    Schmidt, R., Weitere Untersuchungen über Fermente in Darminhalt (Meconium) und Magenin¬halt menschlicher Foeten und Neugeborener, Biochem. Z., 63, 287, 1914.Google Scholar
  26. 26.
    Nemec, A., and Duchon, F., Versuche über Vorkommen und Wirkung der Saccharophosphatase im Pflanzenorganismus, Biochem. Z., 119, 73, 1921.Google Scholar
  27. 27.
    Tomita, M., Zur Kenntnis der Phosphatasen. I. Mitteilung: Saccharophosphatase, Biochem. Z., 131, 161, 1922.Google Scholar
  28. 28.
    Forrai, E., Glycerophosphatase in menschlichen Organen, Biochem. Z., 142, 282, 1923.Google Scholar
  29. 29.
    Morton, R. K., The purification of alkaline phosphatase of animal tissues, Biochem. J., 57, 595, 1954.Google Scholar
  30. 30.
    Von Euler, H., and Funke, Y., Über die Spaltung der Kohlenhydratphosphorsäureester, Z. Physiol. Chem., 77, 488, 1912.CrossRefGoogle Scholar
  31. 31.
    Davies, D. R., The phosphatase activity of spleen extracts, Biochem. J., 28, 529, 1934.Google Scholar
  32. 32.
    International Union of Biochemistry, Report of the Commission on Enzymes, Pergamon Press, Oxford, 1961.Google Scholar
  33. 33.
    Robison, R., The possible significance of hexosephosphoric esters in ossification, Biochem. J., 17, 286, 1923.Google Scholar
  34. 34.
    Robison, R., and Soames, K. M., The possible significance of hexosephosphoric esters in ossification. II. The phosphoric esterase of ossifying cartilage, Biochem. J., 18, 740, 1924.Google Scholar
  35. 35.
    Kay, H. D., and Robison, R., The possible significance of hexosephosphoric esters in ossification. III. The action of the bone enzyme on the organic phosphorus compounds in blood, Biochem. J., 18, 755, 1924.Google Scholar
  36. 36.
    Kay, H. D., and Robison, R., The role of phosphates in carbohydrate metabolism. 1. The action of the muscle enzyme on the organic phosphorus compounds of blood. 2. The effect of insulin administration on the distribution of phosphorus compounds in blood and muscle, Biochem. J., 18, 1139, 1924.Google Scholar
  37. 37.
    Martland, M., Hansman, F. S., and Robison, R., The phosphoric esterase of blood, Biochem. J., 18, 1152, 1924.Google Scholar
  38. 38.
    Martland, M., and Robison, R., The possible significance of hexosephosphoric esters in ossification. V. The enzyme in the early stages of bone development, Biochem. J., 18, 1354, 1924.Google Scholar
  39. 39.
    Martland, M., The phosphoric-esterase of blood at various hydrogen ion concentrations, Bio-chem. J., 19, 117, 1925.Google Scholar
  40. 40.
    Robison, R., and Soames, K. M., A chemical study of defective ossification in rachitic animals, Biochem. J., 19, 153, 1925.Google Scholar
  41. 41.
    Robison, R., The possible significance of hexosephosphoric esters in ossification, Biochem. J., 20, 388, 1926.Google Scholar
  42. 42.
    Martland, M. and Robison, R., Possible significance of hexosephosporic esters in ossification. VI. Phosphoric esters in blood-plasma, Biochem. J., 20, 847, 1926.Google Scholar
  43. 43.
    Martland, M., and Robison, R., The possible significance of hexosephosphoric esters in ossification. VII. The bone phosphatase, Biochem. J., 21, 665, 1927.Google Scholar
  44. 44.
    Morgan, W. T. J., and Robison, R., Constitution of hexose diphosphoric acid. II. The dephosphorylated alpha and beta methylhexosides, Biochem. J., 22, 1270, 1928.Google Scholar
  45. 45.
    Robison, R., and Morgan, W. T. J., Trehalosemonophosphoric ester isolated from the products of fermentation of sugars with dried yeast, Biochem. J., 22, 1277, 1928.Google Scholar
  46. 46.
    Martland, M., and Robison, R., The preparation and use of the bone phosphatase, Biochem. J., 23, 237, 1929.Google Scholar
  47. 47.
    Fell, H. B., and Robison, R., The development and phosphatase activity in vivo and in vitro of the mandibular skeletal tissue of the embryonic fowl, Biochem. J., 24, 1905, 1930.Google Scholar
  48. 48.
    Robison, R., and Soames, K. M., The possible significance of hexosephosphoric esters in ossification. VIII. Calcification in vitro,Biochem. J., 24, 1922, 1930.Google Scholar
  49. 49.
    Robison, R., McLeod, M., and Rosenheim, A. H., The possible significance of hexosephosphoric esters in ossification. IX. Calcification in vitro,Biochem. J., 24, 1927, 1930.Google Scholar
  50. 50.
    Robison, R., and King, E. J., Hexosemonophosphoric esters, Biochem. J., 25, 323, 1931.Google Scholar
  51. 51.
    Robison, R., The Significance of Phosphoric Esters in Metabolism, New York University Press, New York, 1932.Google Scholar
  52. 52.
    Robison, R., Bone phosphatase, Ergeb. Enzym forsch., 1, 280, 1933.Google Scholar
  53. 53.
    Robison, R., and Rosenheim, A. H., Calcification of hypertrophic cartilage in vitro, Biochem. J., 28, 684, 1934.Google Scholar
  54. 54.
    Rosenheim, A. H., and Robison, R., The calcification in vitro of kidney, lung and aorta, Biochem. J., 28, 112, 1934.Google Scholar
  55. 55.
    Niven, J. S. F., and Robison, R., The development of the calcifying mechanism in the long bones of the rabbit, Biochem. J., 28, 2237, 1934.Google Scholar
  56. 56.
    Fell, H. B., and Robison, R., The development of the calcifying mechanism in avian cartilage and osteoid tissue, Biochem. J., 28, 2243, 1934.Google Scholar
  57. 57.
    Shipley, P. G., Kramer, B., and Howland, J., Studies upon calcification in vitro, Biochem. J., 20, 379, 1926.Google Scholar
  58. 58.
    Rasmussen, H., and Reifenstein, E. C., The parathyroid glands, in: Textbook of Endocrinology, 3rd ed. (Williams, R. H., ed.), p. 731, W. B. Saunders, Philadelphia, 1962.Google Scholar
  59. 59.
    King, E. J., and Armstrong, A. R., A convenient method for determining serum and bile phosphatase activity, Can. Med. Assoc. J., 31, 376, 1934.Google Scholar
  60. 60.
    Obituary notice, Robert Robison (1883-1941), Biochem. J., 35, 1081, 1941.Google Scholar
  61. 61.
    Kay, H. D., Kidney phosphatase, Biochem. J., 20, 791, 1926.Google Scholar
  62. 62.
    Cattell, J. M. and Cattell, J. (eds.), American Men of Science, A Biographical Directory, The Science Press, New York, 1933.Google Scholar
  63. 63.
    Kay, H. D., The phosphatases of mammalian tissues, Biochem. J., 22, 855, 1928.Google Scholar
  64. 64.
    Albers, H., and Albers, E., Über die Nierenphosphatase. I. Mitteilung zur Kenntnis der Phosphatasen, Z. Physiol. Chem., 232, 165, 1935.CrossRefGoogle Scholar
  65. 65.
    Albers, H., and Albers, E., Über eine einfache Methode zur Darstellung hochaktiver Phosphatase-praparate aus tierischem Material, Z. Physiol. Chem., 232, 189, 1935.CrossRefGoogle Scholar
  66. 66.
    Portmann, P., Zur Kenntnis der alkalischen Damphosphatase, Z. Physiol. Chem., 309, 87, 1957.CrossRefGoogle Scholar
  67. 67.
    Morton, R. K., Separation and purification of enzymes associated with insoluble particles, Nature CLondon), 166, 1092, 1950.CrossRefGoogle Scholar
  68. 68.
    Obituary, Robert Kerford Morton, Aust. J. Sci., 26, 285, 1964.Google Scholar
  69. 69.
    Morton, R. K., Microsomal particles of normal cow’s milk, Nature (London), 171, 734, 1953.CrossRefGoogle Scholar
  70. 70.
    Morton, R. K., Transferase activity of hydrolytic enzymes, Nature (London), 172, 65, 1953.CrossRefGoogle Scholar
  71. 71.
    Morton, R. K., Alkaline phosphatase of milk. I. Association of the enzyme with a particulate lipoprotein complex, Biochem. J., 55, 786, 1953.Google Scholar
  72. 72.
    Morton, R. K., Alkaline phosphatase of milk. II. Purification of the enzyme, Biochem. J., 55, 795, 1953.Google Scholar
  73. 73.
    Morton, R. K., The lipoprotein particles in cow’s milk, Biochem. J., 57, 231, 1954.Google Scholar
  74. 74.
    Morton, R. K., Some properties of alkaline phosphatase of cow’s mük and calf intestinal mucosa, Biochem. J., 60, 573, 1955.Google Scholar
  75. 75.
    Morton, R. K., The substrate specificity and inhibition of alkaline phosphatases of cow’s milk and calf intestinal mucosa, Biochem. J., 61, 232, 1955.Google Scholar
  76. 76.
    Morton, R. K., The kinetics of hydrolysis of phenyl phosphate by alkaline phosphatases, Biochem. J., 65, 674, 1957.Google Scholar
  77. 77.
    Morton, R. K., The phosphotransferase activity of phosphatase. II. Studies with purified alkaline phosphomonoesterases and some substrate specific phosphatases, Biochem. J., 70, 139, 1958.Google Scholar
  78. 78.
    Bailie, M. J., and Morton, R. K., Comparative properties of microsomes from cow’s milk and from mammary gland. I. Enzymic activities, Biochem. J., 69, 35, 1958.Google Scholar
  79. 79.
    Malamy, M. H., and Horecker, B. L., Purification and crystallization of the alkaline phosphatase of Escherichia coli, Biochemistry, 3, 1893, 1964.CrossRefGoogle Scholar
  80. 80.
    Kay, H. D., and Graham, W. R., Phosphorus compounds of milk. VI. The effect of heat on milk phosphatase: A simple method for distinguishing raw from pasteurized milk, raw from pasteurized cream, and butter made from raw cream from that made from pasteurized cream, J. Dairy Res., 5, 63, 1933.CrossRefGoogle Scholar
  81. 81.
    Moss, D. W., and King, E. J., Properties of alkaline phosphatase fractions separated by starch gel electrophoresis, Biochem. J., 84, 192, 1962.Google Scholar
  82. 82.
    Posen, S., Neale, F. C., and Clubb, J. S., Heat inactivation in the study of human alkaline phosphatase, Ann. Intern. Med., 62, 1234, 1965.Google Scholar
  83. 83.
    Albers, D., Die Trennung der Phosphatasen in Protein und prosthetische Gruppe. I. Mitteilung: Die Trennung der alkalische Nierenphosphatase in Protein und prosthetische Gruppe, Z. Physiol. Chem., 261, 43, 1939.CrossRefGoogle Scholar
  84. 84.
    Albers, D., Die vollständige Trennung der alkalische Nierenphosphatase in Protein und prosthe-tische Gruppe und ihre Reaktivierung. II. Mitteilung, Z. Physiol. Chem., 261, 269, 1939.CrossRefGoogle Scholar
  85. 85.
    Abul-Fadl, M. A. M., King, E. J., Roche, J., and Thoai, N. V., Purification of alkaline phosphatase, Biochem. J., 44, 428, 1949.Google Scholar
  86. 86.
    Akamatsu, S., and Kobayashi, K., Chemical nature of the cophosphomonoesterase,Enzymologia, 15, 154, 1951.Google Scholar
  87. 87.
    Alvarez, E. F., and Lora-Tamayo, M., Purification of kidney alkaline phosphatase, Biochem. J., 69, 312, 1958.Google Scholar
  88. 88.
    Cloetens, R., Reversible Abspaltung des zweiten Metalles der alkalischen Phosphatase. II, Biochem. Z., 308, 37, 1941.Google Scholar
  89. 89.
    Clark, B., and Porteous, J. V., The metal ion activation of the alkaline beta glycerophosphatase of rabbit small intestine, Biochem. J., 95, 475, 1965.Google Scholar
  90. 90.
    Plocke, D. J., Levinthal, C., and Vallee, B., Alkaline phosphatase of Escherichia coli: A zinc metalloenzyme, Biochemistry, 1, 373, 1962.CrossRefGoogle Scholar
  91. 91.
    Garen, A., and Garen, S., Complementation in vivo between structural mutants of alkaline phosphatase from E. coli, J. Mol. Biol., 7, 13, 1963.CrossRefGoogle Scholar
  92. 92.
    Fosset, M., Chappelet-Tordo, D., and Lazdunski, M., Intestinal alkaline phosphatase: Physical properties and quaternary structure, Biochemistry, 13, 1783, 1974.CrossRefGoogle Scholar
  93. 93.
    Wachsmuth, E. D., and Hiwada, K., Alkaline phosphatase from pig kidney: Method of purification and molecular properties, Biochem. J., 141, 273, 1974.Google Scholar
  94. 94.
    Ohkubo, A., Langerman, N., and Kaplan, M. M., Rat liver alkaline phosphatase: Purification and properties, J. Biol. Chem., 249, 7174, 1974.Google Scholar
  95. 95.
    Engström, L., Studies on calf-intestinal alkaline phosphatase. II. Incorporation of inorganic phosphate into a highly purified preparation, Biochim. Biophys. Acta, 52, 49, 1961.CrossRefGoogle Scholar
  96. 96.
    Engström, L., Incorporation of inorganic phosphate into alkaline phosphatase from E. coli. Biochim. Biophys. Acta, 56, 606, 1962.CrossRefGoogle Scholar
  97. 97.
    Schwartz, J. H., and Lipmann, F., Phosphate incorporation into alkaline phosphatase of E. coli, Proc. Natl Acad. Sci. U.S.A., 47, 1996, 1961.Google Scholar
  98. 98.
    Schwartz, J. H., Crestfield, A., and Lipmann, F., The amino acid sequence of a tetradecapeptide containing the reactive serine in E. coli alkaline phosphatase, Proc. Natl Acad. Sci. U.S.A., 49, 722, 1963.Google Scholar
  99. 99.
    Milstein, C., The amino acid sequence around the reactive serine residue in alkaline phosphatase from Escherichia coli, Biochem. J., 92, 410, 1964.Google Scholar
  100. 100.
    Zwaig, N., and Milstein, C., The amino acid sequence around the reactive serine residue in alkaline phosphatase of Serratia marcescens, Biochem. J., 92, 421, 1964.Google Scholar
  101. 101.
    Simpson, R. T., and Vallee, B. L., Two differentiate classes of metal atoms in alkaline phosphatase of Escherichia coli, Biochemistry, 7, 4343, 1968.CrossRefGoogle Scholar
  102. 102.
    Schlesinger, S., and Schlesinger, M. J., The effect of amino acid analogues on alkaline phosphatase formation in Escherichia coli K-12: Substitution of 2-methylhistidine for histidine, J. Biol. Chem., 244, 3803, 1969.Google Scholar
  103. 103.
    Attias, J., Schlesinger, M. J., and Schlesinger, S., The effect of amino acid analogues on alkaline phosphatase formation in Escherichia coli K-12. IV. Substitution of canavanine for arginine, J. Biol. Chem., 244, 3810, 1969.Google Scholar
  104. 104.
    Morris, H., and Schlesinger, M. J., Effects of proline analog use on the formation of alkaline phosphatase in Escherichia coli, J. Bacteriol., 1ll, 203, 1972.Google Scholar
  105. 105.
    Kelley, P. M., Neuman, D. A. Schriefer, K., Cancedda, F., Schlesinger, M. J., and Bradshaw, R. A., Amino acid sequence of Escherichia coli alkaline phosphatase: Amino and carboxyl-terminal sequences and variations between two isozymes, Biochemistry, 12, 3499, 1973.CrossRefGoogle Scholar
  106. 106.
    Hanson, A. W., Applebury, M. L., Coleman, J. E., and Wyckoff, H. W. X-ray studies on single crystals of Escherichia coli alkaline phosphatase, Biol. Chem., 245, 4975, 1970.Google Scholar
  107. 107.
    Knox, J. R., and Wyckoff, H. W., A crystallographic study of alkaline phosphatase at 7.7 Å resolution, J. Mol. Biol, 74, 533, 1973.CrossRefGoogle Scholar
  108. 108.
    Neumann, A., Einfache Veraschungsmethode (Säuregemisch-Veraschung) und Vereinfachte Bestimmungen von Eisen, Phosphorsäure, Salzsäure und anderen Aschenbestandtheilen unter Benut-zung dieser Säuregemisch-Veraschung, Z. Physiol Chem., 37, 115, 1902.CrossRefGoogle Scholar
  109. 109.
    Taylor, A. E., and Miller, C. W., On the estimation of phosphorus in biological material, J. Biol. Chem., 18, 215, 1914.Google Scholar
  110. 110.
    Bell, R. D., and Doisy, E. A., Rapid colorimetric methods for the determination of phosphorus in urine and blood, J. Biol. Chem., 44, 55, 1920.Google Scholar
  111. 111.
    Briggs, A. P., A modification of the Bell-Doisy phosphate method, J. Biol. Chem., 53, 13, 1922.Google Scholar
  112. 112.
    Kay, H. D., Plasma phosphatase. I. Method of determination: Some properties of the enzyme, J. Biol. Chem., 89, 235, 1930.Google Scholar
  113. 113.
    Kuttner, T., and Cohen, H. R., Micro colorimetric studies. I. A molybdic acid, stannous chloride reagent: The micro estimation of phosphate and calcium in pus, plasma, and spinal fluid, J. Biol. Chem., 75, 517, 1927.Google Scholar
  114. 114.
    Kuttner, T., and Lichtenstein, L., Micro colorimetric studies. II. Estimation of phosphorus: Molybdic acid-stannous chloride reagent, J. Biol. Chem., 86, 671, 1930.Google Scholar
  115. 115.
    Bodansky, A., Phosphatase studies. I. Determination of inorganic phosphate; Beer’s law and interfering substances in the Kuttner-Lichtenstein method, J. Biol. Chem., 99, 197, 1932.Google Scholar
  116. 116.
    Bodansky, A., Phosphatase studies. II. Determination of serum phosphatase: Factors influencing the accuracy of the determination, J. Biol. Chem., 101, 93, 1933.Google Scholar
  117. 117.
    Asakawa, K., Über die fermentative Spaltung der verschiedenen Phosphosäureester, J. Biochem. (Tokyo), 11, 143, 1929.Google Scholar
  118. 118.
    Bessey, O. A., Lowry, O. H., and Brock, M. J., A method for the rapid determination of alkaline phosphatase with five cubic millimeters of serum, J. Biol. Chem., 164, 321, 1946.Google Scholar
  119. 119.
    Kay, H. D., The phosphatases of mammalian tissues. II. Pyrophosphatase, Biochem. J., 22, 1446, 1928.Google Scholar
  120. 120.
    Fernley, H. N., and Walker, P. G., Studies on alkaline phosphatase: Inhibition by phosphate derivatives and the substrate specificity, Biochem. J., 104, 1011, 1967.Google Scholar
  121. 121.
    Cox, R. P., and Griffin, M. J., Pyrophosphatase activity of mammalian alkaline phosphatase, Lancet, 2, 1018, 1965.CrossRefGoogle Scholar
  122. 122.
    Harder, M., Enzyme catalyzed hydrolysis of inorganic pyrophosphate, Enzyme, 19, 165, 1975.Google Scholar
  123. 123.
    Hommerberg, C., Zur Kenntnis der Spezifität tierischer Phosphatase, Z. Physiol Chem., 185, 123, 1929.CrossRefGoogle Scholar
  124. 124.
    Bodansky, O., Mechanism of inhibition of phosphatase activity of glycine, J. Biol. Chem., 165, 605, 1946.Google Scholar
  125. 125.
    Wilson, I. B., Dayan, J., and Cyr, K., Some properties of alkaline phosphatase from Escherichia coli, J. Biol. Chem., 239, 4182, 1964.Google Scholar
  126. 126.
    McComb, R. B., and Bowers, G. N., Jr., Study of optimum buffer conditions for measuring alkaline phosphatase activity in human serum, Clin. Chem., 18, 97, 1972.Google Scholar
  127. 127.
    Bowers, G. N., Jr., and McComb, R. B., A continuous spectrophotometric method for measuring the activity of serum alkaline phosphatase, Clin. Chem., 12, 10, 1966.Google Scholar
  128. 128.
    Bloch, W., and Schlesinger, M. J. Kinetics of substrate hydrolysis by molecular variants of Escherichia coli alkaline phosphatase, J. Biol. Chem., 249, 1760, 1974.Google Scholar
  129. 129.
    Marsh, W. H., Fingerhut, B., and Kirsch, E., Adaptation of an alkaline phosphatase method for automatic colorimetric analysis, Clin. Chem., 5, 119, 1959.Google Scholar
  130. 130.
    Boivin, A., and Mesrobeanu, L., Contribution a l’étude de la composition chimique des bactéries: Les substances phosphorées au cours d’autolyse bactérienne, C. R. Seances Soc. Biol. Paris, 112, 611, 1933.Google Scholar
  131. 131.
    Roche, J., Sur la spécificité des phosphatases des mammifères, C. R. Seances Soc. Biol. Paris, 107, 1144, 1931.Google Scholar
  132. 132.
    Kutscher, W., and Wolbergs, H., Prostataphosphatase, Z. Physiol. Chem., 236, 237, 1935.CrossRefGoogle Scholar
  133. 133.
    Kutscher, W., and Worner, A., Prostataphosphatase. II. Mitteilung, Z. Physiol Chem., 239, 109, 1936.CrossRefGoogle Scholar
  134. 134.
    Belfanti, S., Contardi, A., and Ercoli, A., Studies on the phosphatase. The influence of some electrolytes on the phosphatases of animal tissues: Phosphatases of the liver, kidney, serum and bones of the rabbit, Biochem. J., 29, 517, 1935.Google Scholar
  135. 135.
    Erdtman, H., Glycerophosphatspaltung durch Nierenphosphatase und ihre Aktivierung, Z. Physiol Chem., 172, 182, 1927.CrossRefGoogle Scholar
  136. 136.
    Erdtman, H., Über Nierenphosphatase und ihre Aktivierung, Z. Physiol Chem., 177, 211, 1928.CrossRefGoogle Scholar
  137. 137.
    Jenner, H. D., and Kay, H. D., The phosphatases of mammalian tissues. III. Magnesium and the phosphatase system, J. Biol Chem., 93, 733, 1931.Google Scholar
  138. 138.
    Pett, L. B., and Wynne, A. M., The influence of arsenate and arsenite on the enzyme breakdown of phosphoric acid esters, Biochem. J., 28, 365, 1934.Google Scholar
  139. 139.
    Du Bois, K. P., Cochran, K. W., and Mazur, M., Inhibition of phosphatases by beryllium and antagonism of the inhibition by manganese, Science, 110, 420, 1949.CrossRefGoogle Scholar
  140. 140.
    Fishman, W. H., Green, S., and Inglis, N., Organ-specific behavior exhibited by rat intestine and liver alkaline phosphatase, Biochim. Biophys. Acta, 62, 363, 1962.CrossRefGoogle Scholar
  141. 141.
    Van Belle, H., Kinetics and inhibition of alkaline phosphatases from canine tissues, Biochim. Biophys. Acta, 289, 158, 1972.Google Scholar
  142. 142.
    Shinowara, G. Y., Jones, L. M., and Reinhart, H. L., The estimation of serum inorganic phosphate and “acid” and “alkaline” phosphatase activity, J. Biol. Chem., 142, 921, 1942.Google Scholar
  143. 143.
    lino, S., Abe, K., Oda, T., Suzuki, H., and Sugiura, M., A new method of radioimmunoassay for human placental alkaline phosphatase, Clin. Chim. Acta, 42, 161, 1972.CrossRefGoogle Scholar
  144. 144.
    Jacoby, B., and Bagshawe, K. D., Radioimmunoassay for placental-type alkaline phosphatase, Cancer Res., 32, 2413, 1972.Google Scholar
  145. 145.
    Holmgren, P. A., Stigbrand, T., Damber, M. G. and von Schoultz, B., A double antibody solid phase radioimmunoassay for placental alkaline phosphatase, Clin. Chim. Acta, 83, 205, 1978.CrossRefGoogle Scholar
  146. 146.
    Meyerhof, O., and Green, H., Synthetic action of phosphatase. II. Transphosphorylation by alkaline phosphatase in the absence of nucleotides, J. Biol Chem., 183, 377, 1950.Google Scholar
  147. 147.
    Engstrom, L., and Agren, G., Isolation of P-32 labeled phosphoserine from preparations of intestinal alkaline phosphatase incubated with radioactive inorganic phosphate, Acta Chem. Scand., 12, 357, 1958.CrossRefGoogle Scholar
  148. 148.
    Agren, G., Zetterqvist, O., and Ojamae, M., Isolation of 32P-labeled phosphorylserine from a purified preparation of alkaline bone phosphatase incubated with radioactive inorganic phosphate, Acta. Chem. Scand., 13, 1047, 1959.CrossRefGoogle Scholar
  149. 149.
    Schwartz, J. H., The phosphorylation of alkaline phosphatase, Proc. Natl. Acad. Sci. U.S.A., 49, 871, 1963.CrossRefGoogle Scholar
  150. 150.
    Barrett, H., Butler, R., and Wilson, I. B., Evidence for a phosphoryl-enzyme intermediate in alkaline phosphatase catalyzed reactions, Biochemistry, 8, 1042, 1969.CrossRefGoogle Scholar
  151. 151.
    Aldridge, W. N., Barman, T. E., and Gutfreund, H., The rate of formation and decomposition of phosphorylphosphatase (Escherichia coli), Biochem. J., 92, 23C, 1964.Google Scholar
  152. 152.
    Fernley, H. N., and Walker, P. G., Studies on alkaline phosphatase: Transient-state and steady- state kinetics of Escherichia coli alkaline phosphatase, Biochem. J., Ill, 187, 1969.Google Scholar
  153. 153.
    Reid, T. W., and Wilson, I. B., Conformational isomers of alkaline phosphatase in the mechanism of hydrolysis, Biochemistry, 10, 380, 1971.CrossRefGoogle Scholar
  154. 154.
    Lazdunski, M., Petitclerc, C., and Chappelet, D., Flip-flop mechanisms in enzymology; A model: The alkaline phosphatase of Escherichia coli, Eur. J. Biochem., 20, 124, 1971.CrossRefGoogle Scholar
  155. 155.
    Halford, S. E., Schlesinger, M. J., and Gutfreund, H., Escherichia coli alkaline phosphatase: Kinetic studies with the tetrameric enzyme, Biochem. J., 126, 1081, 1972.Google Scholar
  156. 156.
    Jencks, W. P., Catalysis in Chemistry and Enzymology, p. 43, McGraw-Hill, New York, 1969.Google Scholar
  157. 157.
    Dox, A. W., The phosphatase assimilation of Aspergillus niger, J. Biol. Chem., 10, 11, 1911.Google Scholar
  158. 158.
    Dox, A. W., and Golden, R., Phytase in lower fungi, J. Biol. Chem., 10, 183, 1911.Google Scholar
  159. 159.
    Iwatsuru, R., Über die Spaltung der mono-phenyl-phosphorsäuren und monoäthyl-phosphorsäuren Salze durch pflanzliche und tierische Phosphatase, Biochem. Z., 173, 348, 1926.Google Scholar
  160. 160.
    Pett, L. B., and Wynne, A. M., Studies on bacterial phosphatases: The phosphatases of Aerobacter aerogenes, Alcaligenes faecalis and Bacillus subtilis, Biochem. 32, 563, 1938.Google Scholar
  161. 161.
    Bray, J., and King, E. J., The phosphatase reaction as an aid to the identification of microorga-nisms using phenolphthalein phosphate as substrate, J. Pathol. Bacteriol., 55, 315, 1943.CrossRefGoogle Scholar
  162. 162.
    Horiuchi, T., Horiuchi, S., and Mizuno, D., A possible negative feedback phenomenon controlling formation of alkaline phosphomonoesterase in E. coli, Nature (London), 183, 1529, 1959.CrossRefGoogle Scholar
  163. 163.
    Torriani, A., Influence of inorganic phosphate on the formation of phosphatases by Escherichia coli, Biochim. Biophys. Acta, 38, 460, 1960.CrossRefGoogle Scholar
  164. 164.
    Kay, H. D., Changes in the phosphorus partition in human blood during ammonium chloride acidosis, Biochem. J., 18, 1133, 1924.Google Scholar
  165. 165.
    Lawaczeck, H., Uber die Dynamik der Phosphorsaure des Blutes, Biochem. Z., 145, 351, 1924.Google Scholar
  166. 166.
    Kay, H. D., Plasma phosphatase in osteitis deformans and in other diseases of bone, Br. J. Exp. Pathol, 10, 253, 1929.Google Scholar
  167. 167.
    Kay, H. D., Phosphatase in growth and disease of bone, Physiol Rev., 12, 384, 1932.Google Scholar
  168. 168.
    Franseen, C. C., and McLean, R., The phosphatase activity of tissues and plasma in tumors of bone, m. J. Cancer, 24, 299, 1935.Google Scholar
  169. 169.
    Roberts, W. M., Variations in the phosphatase activity of the blood in disease, Br. J. Exp. Pathol, 11, 90, 1930.Google Scholar
  170. 170.
    Roberts, W. M., Blood phosphatase and the van den Bergh reaction in the differentiation of the several types of jaundice, Br. Med. J., 1, 734, 1933.CrossRefGoogle Scholar
  171. 171.
    Cantarow, A., and Nelson, J., Serum phosphatase in jaundice, Arch. Intern. Med., 59, 1045, 1937.Google Scholar
  172. 172.
    Flood, C. A., Gutman, E. B., and Gutman, A. B., Phosphatase activity, inorganic phosphorus and calcium of serum in disease of liver and biliary tract: A study of one hundred and twenty nine cases, Arch. Intern. Med., 59, 981, 1937.Google Scholar
  173. 173.
    Winkelman, L., and Schiffman, A., Clinical significance of variations in serum phosphatase in hepatic and biliary disorders, Arch. Intern. Med., 64, 348, 1939.Google Scholar
  174. 174.
    Rothman, M. M., Meranze, D. R., and Meranze, T., Blood phosphatase as an aid in the differential diagnosis of jaundice, Am. J. Med. Sci., 192, 526, 1936.CrossRefGoogle Scholar
  175. 175.
    Giordano, A. S., Wilhelm, A., and Prestrud, M. C., The serum phosphatase in the differential diagnosis of obstructive jaundice, Am. J. Clin. Pathol, 9, 226, 1939.Google Scholar
  176. 176.
    Gutman, A. B., and Hanger, F. M., Differential diagnosis of jaundice by combined serum phosphatase determinations and cephalin flocculation test, Med. Clin. North Am., 25, 837, 1941.Google Scholar
  177. 177.
    McLagan, N. F., Laboratory tests in the diagnosis of liver disease: A report on three procedures, Br. Med. J., 2, 363, 1944.CrossRefGoogle Scholar
  178. 178.
    Freeman, S., Chen, Y. P., and Ivy, A. C., On the cause of the elevation of serum phosphatase in jaundice, J. Biol Chem., 127, 19, 1938.Google Scholar
  179. 179.
    Carr, J. L., and Foote, F. S., Alkaline and acid phosphatase levels in the serum of dogs after ligation of the common bile duct, Arch. Surg. (Chicago), 49, 44, 1944.Google Scholar
  180. 180.
    Cantarow, A., The influence of icteric sera with high phosphatase activity on the phosphatase activity of normal sera, Am. J. Clin. Pathol., 10, 858, 1940.Google Scholar
  181. 181.
    Coryn, G., Les phosphatases du sang dans le diagnostic des affections osseuses, J. Chir., 33, 213, 1934.Google Scholar
  182. 182.
    Cayla, J., and Fabre, P., La phosphatase serique pendant la gestation, C. R. Seances Soc. Biol. Paris, 120, 748, 1935.Google Scholar
  183. 183.
    Meranze, T., Meranze, D. R., and Rothman, M. M., Blood phosphatase in pregnancy, Am. J. Obstet. Gynecol, 33, 444, 1937.Google Scholar
  184. 184.
    Bodansky, M., Campbell, K., and Ball, E., Changes in serum calcium, inorganic phosphate, and phosphatase activity in the pregnant woman, Am. J. Clin. Pathol., 9, 36, 1939.Google Scholar
  185. 185.
    Smith, C., Studies on the thymus of the mammal. XII. Histochemistry of irradiated thymuses of C57 BL strain of mice, J. Natl. Cancer Inst., 29, 375, 1962.Google Scholar
  186. 186.
    Metealf, D., Sparrow, N., and Wyllie, R., Alkaline phosphatase activity in mouse lymphoma tissue, Aust. J. Exp. Biol., 40, 215, 1962.CrossRefGoogle Scholar
  187. 187.
    Stolbach, L. L., Krant, M. J., and Fishman, W. H., Ectopic production of an alkaline phosphatase isoenzyme in patients with cancer, N. Engl. J. Med., 281, 757, 1969.CrossRefGoogle Scholar
  188. 188.
    Gomori, G., Microtechnical determination of phosphatase in tissue section, Proc. Soc. Exp. Biol. Med., 42, 23, 1939.Google Scholar
  189. 189.
    Takamatsu, H., Histologische und biochemische Studien über die Phosphatase: Histochemische Untersuchungsmethodik der Phosphatase und deren Vertilung in verschiedenen Organen und Gewebe, Trans. Soc. Pathol, 29, 492, 1939.Google Scholar
  190. 190.
    Takeuchi, T., and Takamatsu, H., Histologische und biochemische Studien über die Phosphatase in tuberkulösen Herden (I. Mitteilung), Trans. Soc. Pathol., 29, 490, 1939.Google Scholar
  191. 191.
    Gomori, G., The distribution of phosphatase in normal organs and tissues, J. Cell Comp. Physiol, 77, 71, 1941.CrossRefGoogle Scholar
  192. 192.
    Gomori, G., Distribution of acid phosphatase in the tissues under normal and under pathological conditions, Arch. Pathol, 32, 189, 1941.Google Scholar
  193. 193.
    Gomori, G., Calcification and phosphatase, Am. J. Pathol, 19, 197, 1943.Google Scholar
  194. 194.
    Gomori, G., Histochemical specificity of phosphatase, Proc. Soc. Exp. Biol Med., 70, 7, 1949.Google Scholar
  195. 195.
    Gomori, G., Sources of error in enzymatic histochemistry, J. Lab. Clin. Med., 35, 802, 1950.Google Scholar
  196. 196.
    Gomori, G., Alkaline phosphatase of cell nuclei, J. Lab. Gin. Med., 37, 526, 1951.Google Scholar
  197. 197.
    Lison, L., La recherche histochimique des phosphatases: Etude critique, Bull. Histol. Appl., 25, 23, 1948.Google Scholar
  198. 198.
    Jacoby, F., and Martin, B. F., The histochemical test for alkaline phosphatase, Nature (London), 163, 875, 1949.CrossRefGoogle Scholar
  199. 199.
    Ruyter, J. H. C., and Neumann, H., A critical examination of the histochemical demonstration of the alkaline Phosphomonoesterase, Biochim. Biophys. Acta, 3, 125, 1949.CrossRefGoogle Scholar
  200. 200.
    Feigin, I., Wolf, A., and Kabat, E. A., Histochemical studies on tissue enzymes. VI. A difficulty in the histochemical localization of alkaline phosphatase in nuclei, Am. J. Pathol., 26, 647, 1950.Google Scholar
  201. 201.
    Gomori, G., Pitfalls in histochemistry, Ann. N. Y. Acad. Sci., 50, 968, 1950.CrossRefGoogle Scholar
  202. 202.
    Novikoff, A. B., The validity of histochemical phosphatase methods on the intracellular level, Science, 113, 320, 1951.CrossRefGoogle Scholar
  203. 203.
    Yokoyama, H. O., Stowell, R. E., and Mathews, R. M., Evaluation of histochemical alkaline phosphatase technics, Anat. Ree., 109, 139, 1951.CrossRefGoogle Scholar
  204. 204.
    Fredricsson, B., A modification of the histochemical method for demonstration of alkaline phosphatase in which the non-specific reactions and the diffusion phenomena are reduced, Anat. Anz., 99, 91, 1952.Google Scholar
  205. 205.
    Deane, H. W., Nuclear location of phosphatase activity: Fact or artifact, J. Histochem., 11, 443, 1963.Google Scholar
  206. 206.
    Novikoff, A. B., Their phosphatase controversy: Love’s labours lost, J. Histochem. Cytochem 75, 916, 1970.CrossRefGoogle Scholar
  207. 207.
    Danielli, J. F., A critical study of techniques for determining the cytological position of alkaline phosphatase, J. Exp. Biol., 22, 110, 1946.Google Scholar
  208. 208.
    Menten, M. L., Junge, J., and Green, M. H., A coupling histochemical azo dye test for alkaline phosphatase in the kidney, J. Biol. Chem., 153, 471, 1944.Google Scholar
  209. 209.
    Henrichsen, E., Alkaline phosphatase in osteoblasts and fibroblasts cultivated in vitro, Exp. Cell Res., 11, 115, 1956.CrossRefGoogle Scholar
  210. 210.
    Pearse, A. G. E., Histochemistry, Theory and Applied, 3rd ed., p. 510, Churchill, London, 1968.Google Scholar
  211. 211.
    Morrison, G. R., Karl, I. E., Schwartz, R., and Shank, R. E., The quantitative histochemistry of the normal human liver lobule, J. Lab. Gin. Med., 65, 248, 1965.Google Scholar
  212. 212.
    Brandes, D., Zetterqvist, H., and Sheldon, H., Histochemical techniques for electron microscopy: Alkaline phosphatase, Nature (London), 177, 382, 1956.CrossRefGoogle Scholar
  213. 213.
    Clark, S. L., The localization of alkaline phosphatase in tissues of mice using the electron micro-scope, Am. J. Anat., 109, 57, 1961.CrossRefGoogle Scholar
  214. 214.
    Wachstein, M., and Besen, M., Electron microscopic localization of phosphatase activity in the brush border of the rat kidney, J. Histochem. Cytochem., 11, 447, 1963.CrossRefGoogle Scholar
  215. 215.
    Takano, K., Suzuki, T., and Yasuda, K., Immunohistochemical study on alkaline phosphatase in bovine intestine: A preliminary report, Okajimas Folia Anat. Jpn., 48, 91, 1971.Google Scholar
  216. 216.
    Yamamoto, N., and Yasuda, K., Purification and immunohisto chemical study of alkaline phosphatase in bovine kidney, Histochem. Cytochem., 6, 107, 1973.CrossRefGoogle Scholar
  217. 217.
    Ono, K., The fine structural localization of alkaline phosphatase activity of intestinal microvilli in the developing chick embryo, Acta Anat., 86, 71, 1973.CrossRefGoogle Scholar
  218. 218.
    Bodansky, O., Are the phosphatases of bone, kidney, intestine and serum identical? The use of bile acids in their differentiation, J. Biol Chem., 118, 341, 1937.Google Scholar
  219. 219.
    Cloetens, R., Identification de deux phosphatases “alcalines” dans les organes animaux, Enzymologia, 6, 46, 1939.Google Scholar
  220. 220.
    Markert, C. L., and MoUer, F., Multiple forms of enzymes; tissue, ontogenetic and species specific patterns, Proc. Natl Acad. Sci. U.S.A., 45, 753, 1959.CrossRefGoogle Scholar
  221. 221.
    International Union of Biochemistry, Enzyme Nomenclature: Recommendations (1972) of the Commission on Biochemical Nomenclature on the Nomenclature and Classification of Enzymes together with Their Units and the Symbols of Enzyme Kinetics, p. 23, Elsevier, Amsterdam, 1973.Google Scholar
  222. 222.
    Boyer, S. H., Alkaline phosphatase in human sera and placentae, Science, 134, 1002, 1961.CrossRefGoogle Scholar
  223. 223.
    Estborn, B., Separation of phosphatase isoenzymes by gelfiltration, Z. Klin. Chem., 2, 53, 1964.Google Scholar
  224. 224.
    Fahey, J. L., McCoy, P. F., and Goulian, M., Chromatography of serum proteins in normal and pathologic sera: The distribution of protein bound carbohydrate and cholesterol, siderophyllin, thyroxin-binding protein, B12 binding protein, alkaline and acid phosphatases, radioiodinated albumin and myeloma proteins, J. Clin. Invest., 37, 272, 1958.CrossRefGoogle Scholar
  225. 225.
    Robinson, J. C., and Pierce, J. E., Differential action of neuramidase on human serum alkaline phosphatase, Nature (London),204,472,1964.CrossRefGoogle Scholar
  226. 226.
    Schlamowitz, M., Production of antibodies against dog intestinal phosphatase, J. Biol. Chem., 206, 361, 1954.Google Scholar
  227. 227.
    Schlamowitz, M., Specificity of dog intestinal phosphatase antiserum, J. Biol Chem., 206, 369, 1954.Google Scholar
  228. 228.
    Lehmann, F. G., Immunological relationship between human placental and intestinal alkaline phosphatase, Gin. Chim. Acta, 65, 257, 1975.CrossRefGoogle Scholar
  229. 229.
    Posen, S., Alkaline phosphatase, Ann. Intern. Med., 67, 183, 1967.Google Scholar
  230. 230.
    Harden, A., and Robison, R., A new phosphoric ester obtained by the aid of yeast juice; preliminary note, Proc. Chem. Soc., 30, 16, 1914.Google Scholar
  231. 231.
    Neuman, W. F., and Neuman, M. W., Emerging concepts of the structure and metabolic functions of bone, Am. J. Med., 22, 123, 1957.CrossRefGoogle Scholar
  232. 232.
    Kugler, O. E., Histochemical localization of alkaline phosphatase and nucleic acids in the oocytes of the bluegill (Lepomis machochirus Rafinesque), J. Histochem. Cytochem., 1, 296, 1953.CrossRefGoogle Scholar
  233. 233.
    Dempsey, E. W., and Wislocki, G. B., Histochemical reactions associated with basophilia and acidophilia in the placenta and pituitary gland, Am. J. Anat., 76, 277, 1945.CrossRefGoogle Scholar
  234. 234.
    Danielli, J. F., Structural factors in cell permeability and secretion, Symp. Soc. Exp. Biol., 6, 1, 1952.Google Scholar
  235. 235.
    Garen, A., Genetic control of the bacterial enzyme, alkaline phosphatase, in: Microbial Genetics (Hayes, W., and Clowes, R. C., eds.), p. 239, Cambridge University Press, Cambridge, 1960.Google Scholar
  236. 236.
    Engstrom, L., Further studies on the incorporation of inorganic phosphate into calf-intestinal alkaline phosphatase, Biochirru Biophys. Acta, 54, 179, 1961.CrossRefGoogle Scholar
  237. 237.
    Engstrom, L., Studies on bovine-liver alkaline phosphatase, purification, phosphate incorporation, Biochim. Biophys. Acta, 92, 71, 1964.Google Scholar
  238. 238.
    Stieda, A., Personal communication.Google Scholar
  239. 239.
    McComb, R. B., Unpublished.Google Scholar
  240. 240.
    Goldblatt, H., Personal communication.Google Scholar
  241. 241.
    Takamatsu, H., Personal communication.Google Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Robert B. McComb
    • 1
  • George N. BowersJr.
    • 1
  • Solomon Posen
    • 2
  1. 1.Hartford HospitalHartfordUSA
  2. 2.Sydney HospitalSydneyAustralia

Personalised recommendations