Skip to main content

The Application of X-Ray Topography to Materials Science

  • Conference paper
Nondestructive Evaluation of Materials

Part of the book series: Sagamore Army Materials Research Conference Proceedings ((SAMC,volume 23))

Abstract

Basic x-ray topographic methods are described and principles of image contrast of the defect structure are briefly reviewed. Special emphasis is placed on showing the usefulness of these methods to problems in materials science and to the characterization of materials when applied in combination and in conjunction with x-ray methods of precise structural analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berg, W.F., “Über eine RÖntgenographische Methode zur Untersuchung von GitterstÖrungen an Kristallen”, Nàturwiss., 19 (1931) 391–96; “About the History of Load of Deformed Crystals”, Z. Kristallogr., 89 (1934) 286–94.

    Google Scholar 

  2. Barrett, C.S., “A New Microscopy and Its Potentialities”, Trans. IMD-AIME, 161 (1945) 15–64.

    Google Scholar 

  3. Nagata, N. and T. Vreeland, “Basal Dislocation Interaction with a Forest of Non-basal Dislocation in Zinc”, Phil. Mag., 25 (1972) 1137–50.

    Article  ADS  Google Scholar 

  4. Obst, B., H. Auer and M. Wilkens, “Untersuchungen zur Versetzungs anordnung in Verformten Kupfereinkristallen. II. Die Versetzungs anordnung im Bereich II”, Mat. Sci. Eng., 3 (1968) 41–55.

    Article  Google Scholar 

  5. Becker, C. and B. Pepel, “Dislocation Helices in Molybdenum”, Phys. Stat. Sol., 32 (1969) 443–46.

    Article  ADS  Google Scholar 

  6. Authier, A., “Contrast of Images in X-Ray Topography”, in Modern Diffraction and Imaging Techniques in Material Science, ed. by S. Amelinckx, R. Gevers, G. Remaut and J. Van Landuyt. Amsterdam, North Holland Publishing Co., 1970, pp. 480–520.

    Google Scholar 

  7. Kato, N., “Dynamical Theory of Imperfect Crystals”, in X-Ray Diffraction, New York, McGraw-Hill, 1974, pp. 350–438.

    Google Scholar 

  8. Meieran, E.S., “The Application of X-Ray Topographical Techniques to the Study of Semiconductor Crystals and Devices”, Siemens Rev., 4th Special Issue 37 (1970), 39–80.

    Google Scholar 

  9. Nakayama, Y., S. Weissmann and T. Imura, “Substructure and Dislocation Networks in Tungsten”, in Direct Observation of Imperfections in Crystals, ed. by J.B. Newkirk and J.H. Wernick, New York, Interscience, 1962, pp. 573–92.

    Google Scholar 

  10. Kingman, P.W., “A Method of Analyzing Image Distortions in Diffraction Topographs”, J. Appl. Crystl., 6 (1973) 12–19.

    Article  Google Scholar 

  11. Hirose, M., “The Strain Distribution Within and Around Deformation Twin Bands of Iron Single Crystals”, Japan. J. Appl. Phys., 11 (1972) 309–18.

    Article  Google Scholar 

  12. Chikawa, S. and S.B. Austerman, “X-Ray Diffraction Contrast of Inversion Twin Boundaries in BeO Crystals”, J. Appl. Cryst., 1 (1968) 165–71.

    Article  Google Scholar 

  13. Newkirk, J.B., “The Observations of Dislocations and Other Imperfections by X-Ray Extinction Contrast”, Trans. MS-AIME, 215 (1959) 483–97.

    Google Scholar 

  14. Pope, D.P., T. Vreeland, Jr. and D.S. Wood, “Mobility of Edge Dislocations in the Basal Slip System of Zinc”, J. Appl. Phys., 38 (1967) 4011–18.

    Article  ADS  Google Scholar 

  15. Gorman, J.A., D.S. Wood and T. Vreeland, Jr., “Mobility of Dislocations in Aluminum”, J. Appl. Phys., 40 (1969) 833–41.

    Article  ADS  Google Scholar 

  16. Jassby, K.M. and T. Vreeland, Jr., “An Experimental Study of the Mobility of Edge Dislocations in Pure Copper Single Crystals” Phil. Mag., 21 (1970) 1147–68.

    Article  ADS  Google Scholar 

  17. Turner, A.P.L. and T. Vreeland, Jr., “The Effect of Stress and Temperature on the Velocity of Dislocations in Pure Iron Mono-Crystals”, Acta Met., 18 (1970) 1225–35.

    Article  Google Scholar 

  18. James, R.W., The Optical Principles of the Diffraction of X-Rays, London, G. Bell and Sons, Ltd., 1948, pp. 304–17.

    Google Scholar 

  19. Bonse, U., “X-Ray Picture of the Field of Lattice Distortion Around Single Dislocation”, in Direct Observation of Imperfections in Crystals, ed. by J.B. Newkirk and J.H. Werhick, New York, Interscience, 1962, pp. 431–60.

    Google Scholar 

  20. Weissmann, S. and D. Evans, “An X-Ray Diffraction Study of the Substructure of Fine-Grained Aluminum”, Acta Cryst., 7 (1954) 733–37.

    Article  Google Scholar 

  21. Intrater, J. and S. Weissmann, “An X-Ray Diffraction Method for the Study of Substructure of Crystals”, Acta Cryst., 7 (1954) 729–32.

    Google Scholar 

  22. Weissmann, S., B.S. Lement and M. Cohen, “Substructure in Refractory Metals”, in Refractory Metals and Alloys II, ed. by M. Semchyshen and I. Perlmutter, New York, Interscience, 1963, pp. 117–58.

    Google Scholar 

  23. Braun, R.L. J.S. Kahn and S. Weissmann, “X-Ray Diffraction Analysis of Plastic Deformation in the Salmon Event”, J. Geophys. Res., 74 (1969) 2103–17.

    Article  ADS  Google Scholar 

  24. Weissmann, S., “Method for the Study of Lattic Inhomogeneities Combining X-Ray Microscopy and Diffraction Analysis”, J. Appl. Phys., 27 (1956) 389–95.

    Article  ADS  Google Scholar 

  25. Weissmann, S., “Substructure Characteristics of Fine-Grained Metals and Alloys Disclosed by X-Ray Reflection Microscopy and Diffraction Analysis”, Trans. ASM, 52 (1960) 599–614.

    Google Scholar 

  26. Weissman, S., “Quantitative Study of Substructure Characteristics and Correlation to Tensile Property of Nickel and Nickel Alloys”, J. Appl. Phys., 27 (1956) 1335–44.

    Article  ADS  Google Scholar 

  27. Weissmann, S., “Growth Processes in Recrystallization of Aluminum”, Trans. ASM, 53 (1961) 265–81.

    Google Scholar 

  28. Weissmann, S., T. Imura and N. Hosokawa, “Recrystallization and Grain Growth of Aluminum”, in Recovery and Recrystallization of Metals, ed. by L. Himmel, New York, Interscience, 1963, pp. 241–67.

    Google Scholar 

  29. Garofalo, F. L. Zwell, A.S. Keh and S. Weissmann, “Substructure Formation in Iron During Creep at 600°C”, Acta Met., 9 (1961) 721–29.

    Article  Google Scholar 

  30. Smith, D.K. and S. Weissmann, “Residual Stress and Grain Deformation in Extruded Polycrystalline BeO Ceramics”, J. Am. Ceramic Soc., 51 (1968) 330–36.

    Article  Google Scholar 

  31. Hida, M. and S. Weissmann, “High-Temperature Strength and Ductility Increases of Ti-Mo-Al Alloys by Step-Aging”, Met. Trans., 6A (1975) 1541–46.

    Article  Google Scholar 

  32. Hamajima, T. and S. Weissmann, “Thermal Equilibria and Mechanical Stability of Ti3Al Phase in Ti-Mo-Al Alloys”, Met. Trans., 6A (1975) 1535–39.

    Article  Google Scholar 

  33. Lang, A.R., “Direct Observation of Dislocations by X-Ray Diffraction”, J. A.pl. Phys., 29 (1958) 597–98.

    ADS  Google Scholar 

  34. Lang., A.R., “Some Recent Applications of X-Ray Topography”, in Advances in X-Ray Analysis, Vol. 10, ed. by J.B. Newkirk and G.R. MAllett, New York, Plenum Press, 1967, pp. 91–107.

    Google Scholar 

  35. Lang, A.R., “Recent Applications of X-Ray Topography”, in Modern Diffraction and Imaging Techniques in Material Science, ed. by S. Amelinckx, R. Gevers, G. Remaut and J. Van Landuyt, Amsterdam, North Holland Publishing Co., 1970, pp. 407–79.

    Google Scholar 

  36. Kato, N. and A.R. Lang, “A Study of Pendellösung Fringes in X-Ray Diffraction”, Acta Cryst., 12 (1959) 787–94.

    Article  Google Scholar 

  37. Corrmann, G., “Über Extinktions diagramme von Quarz”, Phys. Z., 42 (1941) 157–62.

    Google Scholar 

  38. Chikawa, J., Y. Asaeda and I. Fujimoto, “New X-Ray Topographic Technique for Detection of Small Defects in Highly Perfect Crystals”, J. Appl. Phys., 41 (1970) 1922–25.

    Article  ADS  Google Scholar 

  39. Renninger, M., “Topographic Observation of Micro Defects (e.g., ‘Swirls’) in Nearly Perfect Crystals”, J. Appl. Cryst., 9 (1976) 178–80.

    Article  Google Scholar 

  40. Weissmann, S., Y. Tsunekawa and V.C. Kannan, “Fracture Studies in Silicon Crystals by X-Ray Pendellösung Fringes and Double-Crystal Diffractometry”, Met. Trans., 4 (1973) 376–77.

    Article  Google Scholar 

  41. Tsunekawa, Y. and S. Weissmann, “Importance of Microplasticity in the Fracture of Silicon”, Met. Trans., 5 (1974) 1585–93.

    Article  Google Scholar 

  42. Tsunekawa, Y. and S. Weissmann, “Dislocation Generation Associated with Crack Growth of Silicon Containing Precipitate Defect Structure”, Mat. Sei. Eng., 17 (1975) 51–56.

    Article  Google Scholar 

  43. Hirsch, P.B., “Mosaic Structure”, in Progress in Metal Physics, Vol. 6, ed. by B. Chalmers and R. King., London, Pergamon Press, 1956, p. 282.

    Google Scholar 

  44. Weissmann, S. and Z.H. Kalman, “Anomalous Transmission in Strained Ductile and Brittle Crystals by the Divergent X-Ray Beam Method”, Phil. Mag., 15 (1967) 539–47.

    Article  ADS  Google Scholar 

  45. Miniari, F., B. Pichaud and L. Capella, “X-Ray Topographic Observation of Dislocation Multiplication by Cross-Slip in Cu Crystals”, Phil. Mag., 31 (1975) 275–84.

    Article  ADS  Google Scholar 

  46. Greenhut, V., P.W. Kingman and S. Weissmann, “The Response of Copper to High Strain Rate Deformation as Disclosed by Electron-Optical and X-Ray Methods”, in Microstructural Science, Vol. 3, ed. by P.M. French, R.J. Gray and J.L. McCall, New York, American Elsevier, 1975, pp. 475–90.

    Google Scholar 

  47. Ellis, T., F.L. Nanni, A. Shrier, Weissmann, S., G.E. Padawer and N. Hosokawa, “Strain and Precision Lattice Parameter Measurements by the X-Ray Divergent Beam Method”, J. Appl. Phys., 35 (1964) 3364–73.

    Article  ADS  Google Scholar 

  48. Imura, T., S. Weissman and J.J. Slade, Jr., “A Study of Age-Hardening of Al-3.85% Cu by the Divergent X-Ray Beam Method”, Acta Cryst., 15 (1962) 786–93.

    Article  Google Scholar 

  49. Slade, J.J., S. Weissmann, K. Nakajima and M. Hirabayashi, “Stress-Strain Analysis of Single Cubic Crystals and Its Application to the Ordering of CuAuI. Paper II”, J. Appl. Phys., 35 (1964) 3373–85.

    Article  ADS  Google Scholar 

  50. Weissmann, S. and A. Shrier, “Strain Distribution in Oxidized Alpha Titanium Crystals”, in The Science Technology and Applications of Titanium, New York, Pergamon Press, 19 70, pp. 441–51.

    Google Scholar 

  51. Weissmann, S. T. Imura, K. Nakajima and S.E. Wisnewski, “Lattice Defects of Quartz Induced by Fast Neutron Irradiation” Proceedings of Crystal Lattice Defects, J. Phys. Soc. of Japan, 18, Supplement III (1963) 179–88.

    Google Scholar 

  52. Glass, H.L. and S. Weissmann, “Synergy of Line Profile Analysis and Selected Area Topography by the X-Ray Divergent Beam Method”, J. Appl. Cryst., 2 (1969) 200–09.

    Article  Google Scholar 

  53. Glass, H.L. and Weissmann, S., “Application of the X-Ray Synergy Method to Analysis of Room-Temperature Compression of Beryllium Crystals”, Met. Trans., 2 (1971) 2865–73.

    Article  Google Scholar 

  54. Kannan, V.C. and S. Weissmann, “Deformation Substructure in Beryllium After Prism Slip”, J. Appl. Phys., 42 (19 71)2632–38.

    Google Scholar 

  55. Weissmann, S. and V.C. Kannan, “Deformation Studies by a New Method Combining Analyses of X-Ray Line Profile and X-Ray Topography with Transmission Electron Microscopy”, J. Mat., 7 (1972) 279–85.

    Article  Google Scholar 

  56. Chikawa, J. and I. Fujimoto, “X-Ray Diffraction Topography with a Vidicon Television Image System”, Appi. Phys. Lett., 13 (1968) 387–89.

    Article  ADS  Google Scholar 

  57. Lang. A.R. and K. Reifsnider, “Rapid X-Ray Topography Using a High-Gain Image Intensifier”, Appi. Phys. Lett., 15 (1969) 258–60.

    Article  ADS  Google Scholar 

  58. Meieran, E.S., “Video Display of X-Ray Images, I. X-Ray Topographs”, J. E.ectrochem. Soc., 118 (1971) 619–28.

    Google Scholar 

  59. Hashizume, H.A., K. Köhra, T. Yamaguchi and K. Konoshita, “Application of an Image Orthicon Camera Tube to X-Ray Diffraction Topography Utilizing a Double-Crystal Arrangement”, Appi. Phys. Lett., 18 (1971) 213–14.

    Article  ADS  Google Scholar 

  60. Rozgonyi, G.A., S.E. Haszko and J.L. Statile, “Instantaneous Video Display of X-Ray Images with Resolving Capabilities Better Than Fifteen Microns”, J. Appi. Phys. Lett., 16 (1970) 443–46.

    Article  ADS  Google Scholar 

  61. Hart, M., “Synchrotron Radiation: Its Application to High-Speed, High-Resolution X-Ray Diffraction Topography”, J. Appi. Cryst., 8 (1975) 436–44.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Plenum Press, New York

About this paper

Cite this paper

Weissman, S. (1979). The Application of X-Ray Topography to Materials Science. In: Burke, J.J., Weiss, V. (eds) Nondestructive Evaluation of Materials. Sagamore Army Materials Research Conference Proceedings, vol 23. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2952-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2952-7_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-2954-1

  • Online ISBN: 978-1-4613-2952-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics