Dynamical Groups in Atomic and Molecular Physics

  • Carl E. Wulfman
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 43)


Most of us expect that the time is approaching when computers will make possible a new kind of experimental atomic and molecular physics, an experimental mathematics, if you wish. One will then ask a sufficiently large and well-programmed computer, what are the properties of such and such atom or molecule - and lo, in a reasonable length of time, a reliable answer will be forthcoming.


Commutation Relation Dynamical Group Invariance Group Schroedinger Equation Contact Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.1
    Walsh, A. D., J. Chem. Soc., (1953), 2260 et seq.; Ch. 1, “Progress in Stereochemistry,” S. Klyne, ed., Butterworths, London, (1959).Google Scholar
  2. 1.2
    Sharp, T., Thesis, Princeton University, Princeton, (1953); c.f. also James D. Talman “Special Functions,” Benjamin, N. Y., (1968).Google Scholar
  3. 1.3
    Watson, G. N., “A treatise on the Theory of Bessel Functions,” Cambridge, (1922).MATHGoogle Scholar
  4. 1.4
    Fock, V., Z. Physik 98, 145–54, (1935).ADSCrossRefMATHGoogle Scholar
  5. 1.5a
    Bacry, H., Nuovo Cimento, 41, 223 (1966).ADSGoogle Scholar
  6. 1.5b
    Barut, A. O., Budini, P., Fronsdal, C., Proc. Roy. Soc. A 291, 106 (1966).ADSCrossRefGoogle Scholar
  7. 1.5c
    Böhm, A., Nuovo Cimento, 43, 665 (1966).ADSCrossRefGoogle Scholar
  8. 1.5
    Sudarshan, E.C.G., Mukunda, N., O’Raifeartaigh, L., Phys. Rev. Lett., 15, 1041 (1965) and Phys. Lett., 19, 322–326 (1965).MathSciNetADSCrossRefGoogle Scholar
  9. 1.5
    Bander, M., Itzykson, C., Rev. Mod. Phys 38, 330, 346 (1966).MathSciNetADSCrossRefGoogle Scholar
  10. 1.5
    Barut, A. O., Phys. Rev., 15, 1538–1540 (1967).ADSCrossRefGoogle Scholar
  11. 1.5
    Fronsdal, C., Phys. Rev. 156, 1665 (1967).ADSCrossRefGoogle Scholar
  12. 1.6a
    Sudarshan, E.C.G., Mukanda, N., O’Raifeartaigh, L., Phys. Rev. Lett. 15, 1041 (1965).MathSciNetADSCrossRefGoogle Scholar
  13. 1.6b
    Wulfman, C. E., Takahata, Y., J. Chem. Phys. 47 488–498, (1967).ADSCrossRefGoogle Scholar
  14. 2.1
    A good introduction to the theory of continuous transformation groups is contained in A. Cohen’s “An Introduction to the Lie Theory of One-Parameter Groups with Applications to the Solution of Differential Equations”,1’ Boston, 1911. Similar in content is J. M. Page’s “Ordinary Differential Equations with an Introduction to Lies Theory of the Group of One-Parameter.” Macmillan, 1897.Google Scholar
  15. 2.2
    An excellent modern look on the theory of many parameter Lie Groups is R. Gilmore, “Lie Groups, Lie Algebras, and Some of Their Applications”, John Wiley, N. Y. ( 1974 ). A standard older reference is L. P. Eisenhart’s “Continuous Groups of Transformations,” reprinted by Dover in 1961.Google Scholar
  16. 3.1
    Two excellent modern works on the invariance properties of ordinary differential equations are, L.V. Ovsjannikov1s “Gruppovye Svoystva Differentsialny Uraveneni,” Novosibirsk 1962, and G. W. Bluman and J. D. Cole’s “Similarity Methods for Differential Equations”, Springer, N. Y., 1974. A very readable older work is Cohen’s book mentioned in reference 2.Google Scholar
  17. 3.2
    The Monograph of L. V. Ovsjannikov mentioned above gives an extensive treatment of partial differential equations. “Similarity Methods for Differential Equations,” by Bluman and Cole treats invariance properties of differential equations subject to boundary conditions.Google Scholar
  18. 3.3a
    Khukurashvili, S., Izvestia Vyeshikh Uchebnykh Zavadenii (Tomsk) 11, (1968); 12, (1968); 1 (1969).Google Scholar
  19. 3.3b
    Anderson, R. L., Kumei, S., Wulfman, C., Phys. Rev. Lett. 28, 988 (1972).Google Scholar
  20. 3.3c
    Anderson, R. L., Kumei, S., Wulfman, C., Rev. Mex. de Fisica 21, 1, 35 (1972).MathSciNetGoogle Scholar
  21. 3.3d
    Anderson, R. L., Kumei, S., Wulfman, C., J. Math. Phys. 14, 11 (1973).MathSciNetGoogle Scholar
  22. 4.1
    Pauli, W., Jr., Z. Physik., 36, 336–363 (1926).ADSCrossRefGoogle Scholar
  23. 4.2
    Fock, V., loc cit.Google Scholar
  24. 4.3
    Biedenharn, L. C., J. Math. Phys. 2, 433 (1961).MathSciNetADSCrossRefMATHGoogle Scholar
  25. 4.4
    Bethe, H. A., Salpeter, E.E., “Quantum Mechanics of One and Two-Electron Atoms”, Academic Press, N. Y., (1957).MATHGoogle Scholar
  26. 4.5
    Shibuya, T., M. Sc. Thesis, Department of Physics, University of the Pacific, Stockton, Ca. (1965).Google Scholar
  27. 4.6
    Shibuya, T., Wulfman, C. E., Proc. Roy. Soc. Ser A. 286, 376–389 (1965).ADSCrossRefGoogle Scholar
  28. 5.1
    Wulfman, C., in E. M. Loebl, ed., “Group Theory and its Applications,” Academic Press, N. Y., (1971), pp. 160–170.Google Scholar
  29. 5.2
    Louck, J., J. Mol. Spectry, 4 298 (1960).ADSCrossRefGoogle Scholar
  30. 5.3
    Biedenharn, L. C., loc. cit.Google Scholar
  31. 6.1
    Barut, A. O., Kleinert, H., Phys. Rev. 156, 1541 (1967).ADSCrossRefGoogle Scholar
  32. 6.2
    Bednar, M., Ann, of Phys. 305–331 (1973).Google Scholar
  33. 6.3
    Wulfman, C., Chem. Phys. Lett. 23, 370 (1973).ADSCrossRefGoogle Scholar
  34. 6.4a
    Sinanoglu, O., Herrick, David R., J. Chem. Phys. 62, 886 (1975).Google Scholar
  35. 6.4b
    Herrick, D. R., Sinanoglu, O., ibid, 65, 850 (1976), Phys. Rev. All, 97 (1975).Google Scholar
  36. 6.5
    Sinanoglu, O., Herrick, D. R., Chem. Phys. Lett. 31, 373 (1975).ADSCrossRefGoogle Scholar
  37. 6.6
    Wulfman, C., Chem. Phys. Lett. 40, 139 (1976).ADSCrossRefGoogle Scholar
  38. 6.7a
    Nikitin, S. I., Opt. Spectry (U.S.S.R.) 42, 459 (1977).ADSGoogle Scholar
  39. 6.7b
    Nikitin, S. I., Ostrovsky, V. N., J. Phys. B. 9, 3141 (1976).ADSCrossRefGoogle Scholar
  40. 7.1
    H. Poincare, “Methodes Nouvelles de la Mechanique Celeste”, I, Ch. 5 ( Gauthier-Villars, Paris, 1892 )Google Scholar
  41. 7.2
    A. N. Kolmogorov, Proc. Int. Math. Cong., Amsterdam, 1954 Vol 1, 315–333. V.l. Arnol’d, Usp. Mat. Nauk. 18, 13 (1963), ibid., p. 91. J. Moser, Nachr. Acad. Wiss. Gottingen, Math. Phys. re. 1, 1 (1962)Google Scholar
  42. 7.3
    E. Inonu, E.P. Wigner, Proc. Nat. Acad. Sci. (US) 39, 510 (1953)MathSciNetADSCrossRefGoogle Scholar
  43. 7.4
    E. J. Saletan, J. Math. Phys. 2, 1 (1961)MathSciNetADSCrossRefMATHGoogle Scholar
  44. 7.5
    R. L. Anderson, T. Shibuya, C. Wulfman Rev. Mex. de Fisica 23, 257 (1974)Google Scholar
  45. 7.6a
    C. Wulfman, T. Sumi, “New Locally Stable, Symmetries of Keplerian Systems”, in Proceedings of the Conference on Mathematical and Computational Aspects of Atomic Scattering Theory, London, Ont., 1978Google Scholar
  46. 7.6b
    7.6b T. Sumi, M. Sc. Thesis, University of the Pacific, Stockton, 1977Google Scholar
  47. 7.7
    c.f. J. L. Synge, “Classical Mechanics”, in Encyclopedia of Physics, S. Flügge, ed., Vol III/l, Springer, Berlin, 1960Google Scholar
  48. 7.8
    S. Lie, F. Engle, Theorie der Transformationsgruppen, Vol II, p. 250, Leipzig, 1890Google Scholar
  49. 8.1
    A. O. Barut, in Proc. Rutherford Centenial Symposium, ( University of Canterbury, Christchurch, N.Z., 1971 ) p. 126Google Scholar
  50. 8.2
    R. L. Anderson, S. Kumei, C. Wulfman, Rev. Mex. de Fisica 21, 1, 35 (1972)MathSciNetGoogle Scholar
  51. 8.3
    A. Stokes, Celestial Mechanics, 16, 27 (1977)MathSciNetADSCrossRefMATHGoogle Scholar
  52. 9.1
    Useful information about SO (5,4) will be found in Table 9.7 of Robert Gilmore’s “Lie Groups, Lie Algebras, and Some of Their Applications”, (Wiley, NY, 1974)Google Scholar
  53. 9.2
    For the use of compact groups as dynamical groups see N.Mukunda, L. O’Raifeartaigh, E. C. G. Sudarshan, Phys. Rev. L.t., 15, 1041, (1965); C. Wulfman, Y. Takahata, J. Chem. Phys., 47, 488 (1967)Google Scholar
  54. 9.3
    V. M. Byakov, Y. I. Kulakov, Y. B. Rumer, A.I. FET, Preprints ITEP 26, ITEP 90, Institute of Theoretical and Experimental Physics, Moscow, 1976Google Scholar
  55. 9.4
    M. B. Berondo, O. A. Novaro, J. Phys. B5, 1104 (1972), ibid., B6, 761 (1973)Google Scholar
  56. 9.5
    A. Kihlberg, S. Strom, Ark. Fys., 31, 491 (1955)MathSciNetGoogle Scholar
  57. 9.6
    Y. Kitagawara, M. Sc. Thesis, University of the Pacific, Stockton, 1977Google Scholar
  58. 9.7
    I. M. Gelfand, M. L. Zeitlin, Dokl. Acad. Nauk. USSR 71, 1017, (1950)Google Scholar
  59. 9.8
    c.f. A. Bohm, Nuovo Cimento, 43, 665 (1966), where it is shown that the quartic Casimir operator of SO(4,1) vanishes on UIR for which A-L vanishesGoogle Scholar
  60. A.l
    Taken from the M. Sc. Thesis of S. Kumei, University of the Pacific, Stockton, 1972Google Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Carl E. Wulfman
    • 1
  1. 1.Department of PhysicsUniversity of PacificStocktonUSA

Personalised recommendations