Experiences in Using Ultrasonic Holography in the Laboratory and in the Field with Optical and Numerical Reconstruction

  • V. Schmitz
  • M. Wosnitza
Part of the Acoustical Imaging book series (ACIM, volume 8)


The holographic method was described and demonstrated by Gabor Greguss, Leith-Upatnieks, Thurstone and Metherell2 among others. For its application there is a need for coherent radiation. In conventional imaging the intensity distribution is recorded and in holography the complex amplitude distribution is recorded. There are two ways of realizing holographic reconstruction: optical and computer processing. In this paper experiences with both methods in the laboratory and in-situ gathered in the last two years are reported, in using ultrasonic holography as a modern tool for imaging flaws in thick-walled sections and in inspection of reactor pressure vessels.


Flaw Size Reactor Pressure Vessel Optical Reconstruction Resolution Capability Flaw Depth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Holscan 200, Holosonics Inc., Richland, Washington 99352Google Scholar
  2. 2.
    “Acoustical Holography”, Volumes 1–7, 1967–1976 New York, Plenum PressGoogle Scholar
  3. 3.
    B. P. Hildebrand, B. B. Brenden, “An Introduction to Acoustical Holography”, Plenum Press, New York, 1972Google Scholar
  4. 4.
    B. P. Hildebrand, H. D. Collins, Evaluation of Acoustical Holography for the Inspection of Pressure Vessel Section, Mat. Res. Stand. 12, No. 12Google Scholar
  5. 5.
    G. A. Deshamps, Some remarks on radio-frequency holography, Proceedings of the IEEE, 55 (4): 570–571 (1967)CrossRefGoogle Scholar
  6. 6.
    K. Magurak, “Probleme de holographischen Abbildung im Mikrowellenbereich”, Forschungsbericht Nr. 6–72, 1fd. Nr. 11, Werthoven, Dez. 1972, Forschungsinstitut fur HochfrequenzphysikGoogle Scholar
  7. 7.
    R. Diehl, “Ein Beitrag zur Auswirkung stochastischer Storungen auf die akustisch-holographische Abbildung von Objekten”, Diss. TU Hannover, 1973Google Scholar
  8. 8.
    N. H. Farhat, “Advances in Holography”, Volume 1, R. Mueller, p. 1–96, Marcel Dekker, New York and Basel, 1975Google Scholar
  9. 9.
    J. Kutzner, H. Wustenberg, Akustische Linienholographie, ein Hilfsmittel zur Fehleranzeigeninterpretation in der Ultraschallprufung, Materialprufung 18 (6): 189 (1976)ADSGoogle Scholar
  10. 10.
    J. W. Goodman, “Introduction to Fourier Optics”, McGraw-Hill, 1968Google Scholar
  11. 11.
    A. E. Holt, W. E. Lawrie, “Acoustical Holography”, Volume 7, 1976, p. 599–609Google Scholar
  12. 12.
    E. E. Aldridge, A. B. Clare, M. I. J. Beale, D. A. Shepherd, “Ultrasonic Holography for the Inspection of Thick Steel Specimens”, Research Agreement No. 6210.GA/8/801 ECC-AERE-G 1002, 1976Google Scholar
  13. 13.
    C. H. Jones, J. W. Kesner, Comparison of signal-processing methods, J. Acoust. Soc. Am., 62 (5): 1226–1238 (1977)ADSCrossRefGoogle Scholar
  14. 14.
    M. S. Lang, “Computer Generated Wavefront Reconstructions”, Penn. State, Box 30, State College, Pa. 16801Google Scholar
  15. 15.
    M. Ueda, T Katayama, T. Sato, Measurement of Vibration Amplitude Distribution of Ultrasonic Transducer by Holographic Technique, Bulletin Research Laboratory, Precision Machinery Electronics, 1976, No. 38, p. 9–13Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • V. Schmitz
    • 1
  • M. Wosnitza
    • 1
  1. 1.Institut für zerstörungsfreie Prüfverfahren UniversitätSaarbrucken 11Germany

Personalised recommendations