Red Cell Choline and Affective Disease

  • I. Hanin

Abstract

It is fascinating, from a historical point of view, to trace the progression of the clinical significance which has been attributed throughout the past 50 years to the role of acetylcholine (ACh) in a variety of centrally mediated disease states. The identity and involvement of ACh in neurotransmitter function have been known to investigators for over five decades. Nevertheless, a concrete understanding of the contribution of ACh to various central nervous system mediated disease states has been persistently elusive over this time span, although indirect evidence has accumulated which has implicated that activation of cholinergic mechanisms may generally be responsible for induction of behavioral suppression and reduction in affect (Rowntree et al., 1950; Pfeiffer and Jenney, 1957; Van Andel, 1959; Gershon and Shaw, 1961; Bowers et al., 1964;Collard et al., 1965; Modestin et al., 1973; Tamminga et al., 1976). Only recently, with the development of a number of other neurotransmitter-related hypotheses for psychiatric disease states, has there also been a serious attempt to implicate ACh in certain types of affective and neurologic disorders. Specifically, Janowsky and his coinvestigators, within the past several years, have been instrumental in directly promoting the concept that ACh may, indeed, play an important role in the etiology of affective disorders (Janowsky et al., 1972; 1974; See also Davis and Janowsky, and Janowsky et al., this book).

Keywords

Lithium Schizophrenia Neurol Acetylcholine Levodopa 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ansell, G.B., and Spanner, S., 1967, The metabolism of labelled ethanolamine in the brain of the rat in vivo, J. Neurochem. 14:813 Google Scholar
  2. Ansell, G.B., and Spanner, S., 1968, The metabolism of [Me- C] choline in the brain of the rat in vivo, Biochem. J. 110: 201.Google Scholar
  3. Aquilonius, S.M., and Eckernas, S.A., 1977, Choline therapy in Huntington’s chorea, Neurology 27: 887.PubMedGoogle Scholar
  4. Basuray, B.N., and Harris, C.A., 1977, Potentiation of d-Tubocurarine (d-Tc) neuromuscular blockade in cats by lithium chloride, Eur. J. Pharmacol. 45: 19.CrossRefGoogle Scholar
  5. Bjegovic, M., and Randic, M., 1971, Effect of lithium ions on the release of acetylcholine from the cerebral cortNature 230: 581.Google Scholar
  6. Bowers, M.B., Goodman, E., and Sim, O.M., 1964, Some behavioral changes in man following anticholinesterase administration, J. Nerv. Ment. Dis. 138: 383.CrossRefGoogle Scholar
  7. Bremer, J., and Greenberg, D.M., 1961, Methyl transferring enzyme system of microsomes in the biosynthesis of lecithin (phosphatidylcholine), Biochim. Biophys. Acta 46: 205.CrossRefGoogle Scholar
  8. Browning, E.T., 1971, Free choline formation by cerebral cortical slices from rat brain, Biochem. Biophys. Res. Comm. 45: 1586.PubMedCrossRefGoogle Scholar
  9. Browning, E.T., and Schulman, MJP., 1968, [C] Acetylcholine synthesis by cortex slices of rat brain, J. Neurochem. 15: 1391.Google Scholar
  10. Casey, D.E., and Denney, D., 1975, Deanol in the treatment of tardive dyskinesia, Am. J. Psychiatry 132: 864.PubMedGoogle Scholar
  11. Casey, D.E., and Denney, D., 1977, Pharmacological characterization of tardive dyskinesia, Psychopharmacology 54: 1.PubMedCrossRefGoogle Scholar
  12. Chin, L.S., Havill, J.H., Rothwell, R.P.G., and Bishop, B.G., 1976, Use of physostigmine in tricyclic antidepressant poisoning, Anaesth. Intern. Care 4: 138.Google Scholar
  13. Cohen, E.L., and Wurtman, R.J., 1975, Brain acetylcholine: increase after systemic choline administration, Life Sci. 16: 1095.PubMedCrossRefGoogle Scholar
  14. Cohen, E.L., and Wurtman, R.J., 1976, Brain acetylcholine: control by dietary choline, Science 191:561.Google Scholar
  15. Collard, J., Lecoq, R., and Demaret, A., 1965, Un essai de therapeutique pathogenique de la schizophrenia par un acetylcholinique: l’oxotremorine, Acta Neurologica et Psychiatrica Belgica 65:122.Google Scholar
  16. Collier, B., Poon, P., and Salehmoghaddam, S., 1972, The formation of choline and of acetylcholine by brain in vitro, J. Neurochem. 19: 59.Google Scholar
  17. Cooper, M.F., and Webster, G.R., 1970, The differentiation of phospholipase A1 and A2 in rat and human nervous tissues, J. Neurochem. 17: 1543.PubMedCrossRefGoogle Scholar
  18. Davis, K.L., Berger, P.A., and Hollister, L.E., 1975, Choline for tardive dyskinesia, N. Engl. J. Med. 293: 152.PubMedGoogle Scholar
  19. Davis, K.L., Hollister, L.E., Barchas, J.D., and Berger, P.A., 1976, Choline in tardive dyskinesia and Huntington’s disease, Life Sci. 19: 1507.PubMedCrossRefGoogle Scholar
  20. Davis, K.L., Berger, P.A., and Hollister, L.E., 1977, Deanol in tardive dyskinesia, Am. J. Psychiatry 134: 807.PubMedGoogle Scholar
  21. Dross, V.K., and Kewitz, H., 1966, Der einbau von i.v. zugefuhrtem cholin in das acetylcholin des gehirns (synthesis in brain of acetylcholine following i.v. administration of choline), Naun. Schmied. Arch. Pharmakol. 255: 10.Google Scholar
  22. Dross, V.K., and Kewitz, H., 1972, Concentration and origin of choline in the rat brain, Naun. Schmied. Arch. Pharmakol. 274: 91.CrossRefGoogle Scholar
  23. Duvigneaud, V., Cohn, M., Chandler, J.P., Schenck, J.R., and Simmonds, S., 1941, The utilization of the methyl group of methionine in the biological synthesis of choline and creatine, J. Biol. Chem. 140: 625.Google Scholar
  24. Eckernas, S.A., and Aquilonius, S.M., (in press), Free choline in human plasma analyzed by a simple radio-enzymatic procedure: age distribution and effect of a meal, Scand. J. Clin. Lab. Invest. Google Scholar
  25. Fann, W.E., Sullivan, J.L., III, Miller, R.D., and McKenzie, G.M., 1975, Deanol in tardive dyskinesia: a preliminary report, Psychopharmacologia 42: 135.PubMedCrossRefGoogle Scholar
  26. Fieve, R.R., Milstoc, M., Kumbaraci, T., and Dunner, D.L., 1976, The effect of lithium on red blood cell Cholinesterase activity in patients with affective disorders, Dis. Nerv. Syst. 37: 240.PubMedGoogle Scholar
  27. Freeman, J.J., and Jenden, D.J., 1976, Minireview: the source of choline for acetylcholine synthesis in brain, Life Sci. 79: 949.CrossRefGoogle Scholar
  28. Gershon, S., and Shaw, F.H., 1961, Psychiatric sequelae of chronic exposure to organophosphorus insecticides, Lancet 7: 1371.CrossRefGoogle Scholar
  29. Growdon, J.H., Cohen, E.L., and Wurtman, R.J., 1977a, Huntington’s disease: Clinical and chemical effects of choline administration, Ann. Neurol. 7: 418.CrossRefGoogle Scholar
  30. Growdon, J.H., Hirsch, M.J., Wurtman, R.J., and Wiener, W., 1977b, Oral choline administration to patients with tardive dyskinesia, N. Engl. J. Med. 297: 524.PubMedCrossRefGoogle Scholar
  31. Hanin, I., and Schuberth, J., 1974, Labelling of acetylcholine in the brain of mice fed on a diet containing deuterium labelled choline: studies utilizing gas chromatography-mass spectrometry, J. Neurochem. 23: 819.PubMedCrossRefGoogle Scholar
  32. Hanin, I., and Skinner, R.F., 1975, Analysis of microquantities of choline and its esters utilizing gas chromatography-chemical ionization mass spectrometry, Anal. Biochem. 66: 568.PubMedCrossRefGoogle Scholar
  33. Hanin, I., Kopp, U., Zahniser, N.R., Shih, T.M., Spiker, D.G., Merikangas, J.R., Kupfer, D.J., and Foster, F.G., 1978, Acetylcholine and choline in human plasma and red blood cells: a gas chromatograph-mass spectrometric evaluation, in “Cholinergic Mechanisms and Psychopharmacology” (D.J. Jenden, ed.), pp. 181–195, Plenum Press, New York.Google Scholar
  34. Haubrich, D.R., Wedeking, P.W., and Wang, P.F.L., 1974, Increase in tissue concentration of acetylcholine in guinea pigs in vivo induced by administration of choline, Life Sci. 14: 921.PubMedCrossRefGoogle Scholar
  35. Heiser, J.F., and Wilbert, D.E., 1974, Reversal of delirium induced by tricyclic anti-depressant drugs with physostigmine, J. Psychiatry 131: 1215.Google Scholar
  36. Hoelzl, J., and Franck, H.P., 1969, Incorporation of doubly labeled lecithin into the brain lipids at different developmental stages of rats, Proc. Intl. Soc. Neurochem. Milan 1969: 219.Google Scholar
  37. Huestis, W.H., 1976, Preliminary characterization of the acetylcholine receptor in human erythrocytes, J. Supramol. Structure 4: 355.CrossRefGoogle Scholar
  38. Illingworth, D.R., and Portman, O.W., 1972, The uptake and metabolism of plasma lysophosphatidyl choline in vivo by thebrainof squirrel monkey s, Biochem. J. 130: 551.Google Scholar
  39. Janowsky, D.S., El-Yousef, M.K., Davis, J.M., and Sekerke, H.J., 1972, A cholinergic- adrenergic hypothesis of mania and depression, Lancet 2: 632.PubMedCrossRefGoogle Scholar
  40. Janowsky, D.S., El-Yousef, M.K., and Davis, J.M., 1974, Acetylcholine and depression, Psychosom. Med. 36: 248.PubMedGoogle Scholar
  41. Jenden, D.J., and Hanin, I., 1974, Gas chromatographic microestimation of choline and acetylcholine after N-demethylation by sodium benzenethiolate, in “Choline and Acetylcholine: Handbook of Chemical Assay Methods” (l. Hanin, ed.), pp. 135–150, Raven Press, New York.Google Scholar
  42. Jenden, D.J., Choi, L., Silverman, R.W., Steinborn, J.A., Roch, M., and Booth, R.A., 1974, Acetylcholine turnover estimation in brain by gas chromatography-mass spectrometry, Life Sei. 14: 55.CrossRefGoogle Scholar
  43. Kassil, G.N., and Sokolinskaya, R.A., 1971, Cholinergic activity of human blood associated with different states of the person, Fiziol Zh. SSSR, Imeni I.M. Sechenova 57: 248.Google Scholar
  44. Kewitz, H., and Pleul, O., 1976, Synthesis of choline from ethanolamine in rat brain, Proc. Natl. Acad. Sci. USA 73: 2181.PubMedCrossRefGoogle Scholar
  45. Klawans, H.L., Topel, J.L., and Bergen, D., 1975, Deanol in the treatment of levodopainduced dyskinesias, Neurology 25: 290.PubMedGoogle Scholar
  46. Lee, G., Lingsch, C., Lyle, P.T., and Martin, K., 1974, Lithium treatment strongly inhibits choline transport in human erythrocytes, Br. J. Clin. Pharmac. 1: 365.Google Scholar
  47. Lingsch, C., and Martin, K., 1976, An irreversible effect of lithium administration to patients, Br. J. Pharmac. 57: 323.Google Scholar
  48. Maslova, A.F., 1967, On the participation of the. sympatho-adrenaline system in the general reaction of adaptation, Problemy Endokrinologii 13: 89.PubMedGoogle Scholar
  49. Massarelli, R., Froissart, C., and Mandel, P., 1977, Diurnal oscillation of choline acetyltransferase activity in human blood, Neurosci. Lett. 5: 95.PubMedCrossRefGoogle Scholar
  50. Miller, E., 1974, Deanol in the treatment of levodopa-induced dyskinesias, Neurology 24: 116.PubMedGoogle Scholar
  51. Milstoc, M., Teodoru,C.V., Fieve, R.R., and Kumbaraci, T., 1975, Cholinesterase activity and the manic-depressive patient, Dis. Nerv. Syst. 36: 191.Google Scholar
  52. Modestin, J., Hunger, J., and Schwartz, R.B., 1973, Uber die depressogene Wirkung von physostigmin, Arch. Psychiat. Nervenkr. 218: 61.CrossRefGoogle Scholar
  53. Newton, R.W., 1975, Physostigmine salicylate in the treatment of tricyclic antidepressant overdosage, JAMA 231: 941.PubMedCrossRefGoogle Scholar
  54. Pfeiffer, C.C., and Jenney, E.H., 1957, The inhibition of the conditioned response and the counteraction of schizophrenia by muscarinic stimulation of the brain, Ann. N.Y.Acad. Sci. 66: 153.Google Scholar
  55. Pfeiffer, C.C., Jenney, E.H., Gallacher, W., Smith, R.P., Bevan, J., Jr., Killam, K.F., Killam, E.K., and Blackmore, W., 1957, Stimulant effect of 2-dimethlaminoethanol — possible precursor of brain acetylcholine, Science 126: 610.PubMedCrossRefGoogle Scholar
  56. Rowntree, D.W., Nevin, S., and Wilson, A., 1950, The effects of diisopropylfluoro- phosphonate in schizophrenia and manic depressive psychosis, J. Neurol Neurosurg. Psychiatry 13: 41.CrossRefGoogle Scholar
  57. Savina, L.S., Sokolinskaya, R.A., and Lobanova, N.A., 1973, Changes in cholinergic activity of blood in patients with paroxysmal nocturnal hemoglobinuria, Probl. Gematol. Pereliev. Krovf 20: 40.Google Scholar
  58. Schuberth, J., Sparf, B., and Sundwall, A., 1969, A technique for the study of acetyl-choline turnover in mouse brain in vivo, J. Neurochem. 16: 695.PubMedCrossRefGoogle Scholar
  59. Schuberth, J., Sparf, B., and Sundwall, A., 1970, On the turnover of acetylcholine in nerve endings of mouse brain in vivo, J. Neurochem. 17: 461.PubMedCrossRefGoogle Scholar
  60. Sevostyanova, G.A., and Tretyakova, K.A., 1970, The state of the acetylcholine- cholinesterase system associated with tonic meso-diencephalic convulsive seizures, Zhur. Nevropatol. Psikhiatr. Im. Korsakova 69: 1811.Google Scholar
  61. Shih, T.M., Kopp, U., and Hanin, I., 1977, Choline in blood as a possible index of brain acetylcholine metabolism in vivo, Neurosci. Abst. 3: 322.Google Scholar
  62. Snyder, B.D., Blonde, L., and McWhirter, W.R., 1974, Reversal of amitriptyline intoxication by physostigmine, JAMA 230: 1433.PubMedCrossRefGoogle Scholar
  63. Snyder, S.H., and Yamamura, H.I., 1977, Antidepressants and the muscarinic acetyl-choline receptor, Arch. Gen. Psychiatry 34: 236.PubMedGoogle Scholar
  64. Stavinoha, W.B., Modak, A.T., and Bowden, C.L., 1977, Acetylcholine and choline in the blood of normal individuals and psychiatric patients, Neurosci. Abstr. 3: 416.Google Scholar
  65. Tamminga, C., Smith, R.C., Chang, S., Haraszti, J.S., and Davis, J.M., 1976, Depression associated with oral choline, Lancet 2: 905.PubMedCrossRefGoogle Scholar
  66. Tamminga, C.A., Smith, R.C., Ericksen, S.E., Chang, S., and Davis, J.M., 1977, Cholinergic influences in tardive dyskinesia, Am. J. Psychiatry 134: 169.Google Scholar
  67. Van Andel, H., 1959, Neuropharmacological studies in catatonic phenomena, in “Neuropsychopharmacology” (P.B. Bradley, P. Denicker, and C. Raduoco-Thomas, eds.), pp. 701–703, Elsevier Publ. Co., Amsterdam.Google Scholar
  68. Van Woert, M.H., 1976, Parkinson’s disease, tardive dyskinesia, and Huntington’s chorea, in “Biology of Cholinergic Function” (AM. Goldberg and I. Hanin, eds.), pp. 583–601, Raven Press, New York.Google Scholar
  69. Vizi, E.S., Illes, P., Ronai, A., and Knoll, J., 1972, The effect of lithium on acetylcholine release and synthesis, Neuropharmacology 77: 521.CrossRefGoogle Scholar
  70. Waziri, R., 1968, Presynaptic effects of lithium no cholinergic synaptic transmission in aplysia neurons, Life Sci. 7: 865.CrossRefGoogle Scholar
  71. Weiss, B.L., Foster, F.G., and Kupfer, D.J., 1976, Cholinergic involvement in neuro-psychiatry syndromes, in “Biology of Cholinergic Function” (A.M. Goldberg and I. Hanin, eds.), pp. 603 - 617, Raven Press, New York.Google Scholar
  72. Woelk, H., Ichikawa, K.P., Binaglia, L., Goracci, G., and Porcellati, G., 1974, Distribution and properties of phospholipases A1 and A2 in synaptosomes and synaptosomal fractions of rat brain, Zeit. Physiol. Chem. 355: 1535.CrossRefGoogle Scholar
  73. Wurtman, R.J., Hirsch, M.J., and Growdon, J.H., 1977, Lecithin consumption raises serum-free-choline levels, Lancet 2: 68.PubMedCrossRefGoogle Scholar
  74. Zahniser, N.R., Chou, D., and Hanin, I., 1977, Is 2-dimethylaminoethanol (deanol) indeed a precursor of brain acetylcholine (ACh)? A gas chromatographic evaluation, J. Pharmacol. Exp. Ther. 200: 545.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • I. Hanin
    • 1
  1. 1.Department of Psychiatry, Western Psychiatric Institute and ClinicUniversity of Pittsburgh School of MedicinePittsburghUSA

Personalised recommendations