Skip to main content

Brain Acetylcholine and Animal Electrophysiology

  • Chapter
Brain Acetylcholine and Neuropsychiatric Disease

Abstract

This review concerns the relationship between electrophysiological activity of the brain and the central cholinergic system. This dipole may be construed in a sense so broad as to be beyond the space limitations of this article; thus, further defining is necessary. Electrophysiological activity to be reviewed here is generated by neuronal populations rather than single neurons, as it involves cholinergically mediated changes in ongoing electrical activity of neuronal populations referred to as electroencephalograph (EEG), electrocorticogram (ECoG), etc. Another major response of neuronal populations, which is also the subject of this review is the compound potential evoked by peripheral or brain stimulation (EP). On the other hand, while the EEG and ECoG are generated by the summation of individual postsynaptic potentials and related phenomena, the pertinent unitary mechanisms whether concerning noncholinergic or cholinoceptive and cholinergic neurons cannot be reviewed in the present context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amatruda III, T.T., Black, D.A., McKenna, T.M., McCarley, R.W., and Hobson, J.A., 1975, Sleep cycle control and cholinergic mechanisms; differential effects of carbachol injections at pontine brain stem sites, Brain Res. 98: 501.

    PubMed  CAS  Google Scholar 

  • Andersen, P., and Andersson, S. A., 1968 “Physiological Basis of Alpha Rhythm,” Applet on Century-Crofts, New York.

    Google Scholar 

  • Babb, T.L., Babb, M., Mahnke, J.H., and Verseano, M., 1973, The action of cholinergic agents on the electrical activity of the non-specific nuclei of the thalamus, Int. J. Neurol. 8: 198.

    Google Scholar 

  • Ban, T., and Hojo, M., 1971, A comparative study of the effects of antiparkinsonian drugs on oxotremorine-induced EEG and muscular activities, Psychopharmacologia (Berl.) 14: 1.

    Google Scholar 

  • Baneijee, U., Feldberg, W., and Flynn, V.P., 1970, Microinjections of tubocurarine, leptazol, strychnine and picrotoxin into the cerebral cortex of anaesthesized cats, Br. J. Pharmacol 40: 6.

    Google Scholar 

  • Baker, W.W., 1965, Tremorine suppression of hippocampal strychnine foci, Arch. Int. Pharmacodyn. Ther. 155: 213.

    Google Scholar 

  • Baker, W.W., and Benedict, F., 1968, Analysis of local discharges induced by intrahippocampal microinjection of carbachol or diisopropylfluorophosphate (DFP), Int. J. Neuropharmacol. 7: 135.

    PubMed  CAS  Google Scholar 

  • Barnes, C.D., and Pompeiano, O., 1970, A brain stem cholinergic system activated by vestibular volleys, Neuropharmacology 9: 391.

    PubMed  CAS  Google Scholar 

  • Barnes, L., Karczmar, A.G., and Ingerson, A., 1975, Effects of DFP on brain serotonin, Pharmacology 17: 180.

    Google Scholar 

  • Barnes, L., Karczmar, A.G., and Ingerson, A., 1976, Serotonin and acetylcholine of rabbit brain following DFP, Pharmacology 18: 202.

    Google Scholar 

  • Barnes, L., Koehn, G., and Karczmar, A.G., in press, Effects of diisopropylphosphofluoridate (DFP) on pain threshold and and serotonin, Proceedings of the Seventh International Congress of Pharmacology, Abstracts.

    Google Scholar 

  • Baxter, B.L., 1969, Induction of both emotional behavior and a novel form of REM sleep by chemical stimulation applied to cat mesencephalon, Exp. Neurol 23: 220.

    PubMed  CAS  Google Scholar 

  • Beleslin, D., Polak, R.L., and Sproull, D.H., 1965, The effect of leptazol and strychnine on the acetylcholine release from the cat brain, J. Physiol (Lond) 181: 308.

    CAS  Google Scholar 

  • Ben-Ari, Y., Dingledine, R., Kanazawa, I., and Kelly, J.S., 1976, Inhibitory effects of acetylcholine on neurones in the feline nucleus reticularis thalami, J. Physiol (Lond.) 261: 641.

    Google Scholar 

  • Ben-Ari, Y., Zigmond, R.E., Shute, C.C.D., and Lewis, P.R., 1977, Regional distribution of choline acetyltransferase and acetylcholinesterase within the amygdaloid complex and stria terminalis system, Brain Res. 120: 435.

    PubMed  CAS  Google Scholar 

  • Birdsall, N.J.M., Burgeu, A.S.V., and Hulme, E.C., 1977, Correlation between the binding properties and pharmacological responses of muscarinic receptors, in “Cholinergic Mechanisms and Psychopharmacology,” (D.J. Jenden, ed.), pp. 25–33, Plenum Press, New York.

    Google Scholar 

  • Bokums, J.A., and Elliott, H.W., 1968, Effects of physostigmine on electrical activity of the cat Brain. Pharmacology 1: 98.

    CAS  Google Scholar 

  • Bonnet, V., and Bremer, F., 1937, Action du potassium, du calcium et de l’acetylcholine sur les activités electriques, spontanees et provoquees, de l’ecorce cerebrale, C.R. Soc. Biol 136: 1211.

    Google Scholar 

  • Borbely, A.A., 1973, “Pharmacological Modifications of Evoked Brain Potentials”, Hans Huber, Bern.

    Google Scholar 

  • Bourdois, P.S., Mitchell, J.F., Somogyi, G.T., and Berle, J.C., 1974, The output per stimulus of acetylcholine from cerebral cortical slices in the presence or absence of cholinesterase inhibition, Br. J. Pharmacol 52: 509.

    PubMed  CAS  Google Scholar 

  • Bovet, D., Longo, V.G., and Silvestrini, B., 1957, Les methodes d’investigations electro- physiologiques dans l’etude des medicaments tranquillisants, in “Internatl. Symp. on Psychotropic. Drug”, (S. Garattini and V. Ghetti, eds.), pp. 193–206, Elsevier, Amsterdam.

    Google Scholar 

  • Bradley, P.B., and Elkes, J., 1953, The effect of atropine, hyoscyamine, physostigmine, and neostigmine on the electrical activity of the brain of the conscious cat, J. Physiol (Lond.) 120: 14 P.

    Google Scholar 

  • Bradley, P.B., and Elkes, J., 1957, The effects of some drugs on the electrical activity of the brain, Brain 88: 11.

    Google Scholar 

  • Bremer, F., 1960, Neurophysiology mechanism in cerebral arousal, in “The Nature of Sleep” (G.E. Wolstenholm and M. O’Connor, eds.), pp. 30–50, Little Brown & Co., Boston.

    Google Scholar 

  • Bremer, F., and Chatonnet, J., 1949, Acetylcholine et cortex cerebrale, Arch. Int. Physiol Biochim. 57: 106.

    PubMed  CAS  Google Scholar 

  • Brooks, D.C., and Gershon, M.D., 1972, An analysis of the effect of reserpine upon ponto-geniculo-occipital wave activity in the cat, Neuropharmacology 11: 449.

    Google Scholar 

  • Brooks, D.C., Gershon, M.D., and Simon, R.P., 1972, brain stem serotonin depletion and ponto-geniculo-occipital wave activity in the cat treated with reserpine, Neuropharmacology 11: 511.

    Google Scholar 

  • Brucke, F.T., and Stumpf, C., 1957, The pharmacology of “arousal reactions” in “Internatl. Symp. on Psychotropic Drugs”, (S. Garattini and V. Ghetti, eds.), pp. 319–324, Elsevier, Amsterdam.

    Google Scholar 

  • Buchwald, N.A., Jeuser, G., Wyers, E.J., and Lauprecht, C.W., 1961a, The “caudate spindle”. III. Inhibition of high frequency stimulation of subcortical structures, Electroencephalogr. Clin. Neurophysiol. 13: 525.

    PubMed  CAS  Google Scholar 

  • Buchwald, N.A., Wyers, E.J., Lauprecht, C.W., and Jeuser, G., 1961b, The “caudate spindle”. IV. A behavioral index of caudate-induced inhibition, Electroencephalogr. Clin. Neurophysiol. 13: 531.

    Google Scholar 

  • Buchwald, N.A., Wyers, E.J., Okuma, T., and Jeuser, G., 1961c, The “caudate spindle”. I. Electrophysiological properties, Electroencephalogr. Clin. Neurophysiol. 75: 509.

    Google Scholar 

  • Buchwald, N.A., Horwath, F.E., Wyers, E.J., and Wakefield, C., 1964, Electroencephalogram rhythm correlated with milk reinforcement in cats, Nature (Lond) 207: 830.

    Google Scholar 

  • Butcher, L.L., 1977, Recent advances in histochemical techniques for the study of central cholinergic mechanisms, in “Cholinergic Mechanisms and Psychopharmacology”, (D.J. Jenden, ed.), pp. 93–124, Plenum Press, New York.

    Google Scholar 

  • Celesia, G.C., and Jasper, H.H., 1966, Acetylcholine released from cerebral cortex in relation to state of activation, Neurology 76: 1053.

    Google Scholar 

  • Chatfleld, P.O., and Dempsey, E.W., 1942, Some effects of prostigmine and acetylcholine on cerebral potentials, Am. J. Physiol. 135: 633.

    Google Scholar 

  • Chatfleld, P.O., and Lord, J.T., 1955, Effects of atropine, prostigmine and acetylcholine on evoked cortical potentials, Electroencephalogr. Clin. Neurophysiol 7: 553.

    Google Scholar 

  • Chen, G., Ensor, C.R., and Bohner, B., 1968, Studies of drug effects on electrically- induced extensor seizures and clinical implications, Arch. Int. Pharmacodyn. Ther. 772: 183.

    Google Scholar 

  • Cheney, D.L., and Costa, E., 1978, Biochemical pharmacology of cholinergic neurons, in “Psychopharmacology — A Generation of Progress”, (M.A. Lipton, A. DiMascio, K.F. Killam, eds.), pp. 283–291, Raven Press, New York.

    Google Scholar 

  • Cheney, D.L., LeFevre, H.F., and Racagni, G., 1975, Choline acetyltransferase activity and mass fragmentographic measurement of acetylcholine in specific nuclei and tracts of rat brain, Neuropharmacology 74: 801.

    Google Scholar 

  • Cheney, D.L., Racagni, E., and Costa, E., 1976, Appendix II: Distribution of acetylcholine and choline acetyltransferase in specific nuclei and tracts of rat brain, in “Biology of Cholinergic Function” (A.M. Goldberg and I. Hanin, eds.), pp. 655–660, Raven Press, New York.

    Google Scholar 

  • Cheramy, A., Nieoullon, A., and Glowinski, J., in press, Role of various nigral afferents on the activity of the nigrostriatal dopaminergic pathways, in “Interdependence of Neurotransmitter Systems in the CNS” (J. Glowinski and A.G. Karczmar, eds.), 7th International Congress of Pharmacology, Pergamon Press, Oxford.

    Google Scholar 

  • Clemente, D.C., Sterman, M.B., and Wyrwicka, W., 1964, Post-reinforcement EEG synchronization during alimentary behavior, Electroencephalogr. Clin. Neurophysiol. 16: 355.

    PubMed  CAS  Google Scholar 

  • Coleman, J.C., and Lindsley, D.B., 1975, Hippocampal correlates of free behavior and behavior induced by stimulation of two hypothalamic-hippocampal systems in the cat, Exp. Neurol. 49: 506.

    PubMed  CAS  Google Scholar 

  • Collier, B., Ilson, D., and Lovet, S., 1977, Factors affecting choline uptake by ganglia and the relationship between choline uptake and acetylcholine synthesis, in “Cholinergic Mechanisms and Psychopharmacology” (D.J. Jenden, ed.), pp. 457–464, Plenum Press, New York.

    Google Scholar 

  • Cordeau, J.D., and Mancia, M., 1959, Evidence for the existence of an electroencephalographic synchronization mechanism originating in the lower brain stem, Electroencephalogr. Clin. Neurophysiol. 77: 551.

    Google Scholar 

  • Cordeau, J.D., Moreau, A., Beaulnes, A., and Lanrin, C., 1963, EEG and behavioral changes following microinjections of acetylcholine and adrenaline in the brain stem of cats, Arch. Ital. 707: 30.

    Google Scholar 

  • Crawford, J.M., Curtis, D.R., Voorhoens, P.E., and Wilson, V.J., 1966, Acetylcholine sensitivity of cerebellar neurons in the cat, J. Physiol (Lond.) 186: 139.

    CAS  Google Scholar 

  • Daniels, J.C., and Spehlman, R., 1973, The convulsant effects of topically applied atropine, Electroencephalogr. Clin. Neurophysiol. 34: 83.

    PubMed  CAS  Google Scholar 

  • De Feudis, F.W., 1974, “Central Cholinergic Synapses and Behaviour,” Academic Press, London.

    Google Scholar 

  • Dempsey, F.W., and Morison, R.S., 1941, The production of rhythmically recurrent cortical potentials after localized thalamic stimulation, Am. J. Physiol 135: 293.

    Google Scholar 

  • Dempsey, E.W., and Morison, R.S., 1942, The interaction of certain spontaneous and induced cortical potentials, Am. J. Physiol 135: 301.

    Google Scholar 

  • De Robertis, E., and Schacht, J., 1974, “Neurochemistry of Cholinergic Receptors” Raven Press, New York.

    Google Scholar 

  • Desi, I., Dura, G., Gonczi, L., Kneffel, Z., Strohmayer, A., and Szabo, Z., 1975, Toxicity of malathion to mammals, aquatic organisms and tissue culture cells, Arch. Environ. Contam. Toxicol 34: 410.

    Google Scholar 

  • Domino, E.F., 1968, Cholinergic mechanisms and the EEG, Electroencephalogr. Clin. Neurophysiol 24: 292.

    PubMed  CAS  Google Scholar 

  • Domino, E.F., and Wilson, A.E., 1973, Enhanced utilization of brain acetylcholine during morphine withdrawal in the rat, Nature 243: 285.

    PubMed  CAS  Google Scholar 

  • Domino, E.F., and Yamamoto, K., 1965, Nicotine effect on the sleep cycle of the cat, Science 150: 631.

    Google Scholar 

  • Domino, E.F., Dren, A.T., and Yamamoto, K.I., 1967, Pharmacologic evidence for cholinergic mechanisms in neocortical and limbic activating systems, Prog. brain Res. 27: 331.

    Google Scholar 

  • Domino, E.F., Bartolini, A., Kawamura, H., 1977, Effects of reticular stimulation, d-amphetamine and scopolamine on acetylcholine release from the hippocampus of Brainstem transected cats, Arch. Int. Pharmacodyn. Ther. 225(2): 294.

    Google Scholar 

  • Dudar, J.D., and Szerb, J.C., 1969, The effect of topically applied atropine on resting and evoked cortical acetylcholine release, J. Physiol (Lond.)203: 141.

    Google Scholar 

  • Dun, N.J., and Karczmar, A.G., 1977, A comparison of the effect of theophylline and cyclic adenosine 3’5’ -monophosphate on the superior cervical ganglion of the rabbit by means of the sucrose-gap method, J. Pharmacol Exp. Ther. 202: 89.

    PubMed  CAS  Google Scholar 

  • Dun, N.J., and Karczmar, A.G., 1978, Involvement of an interneuron in the generation of the slow inhibitory postsynaptic potential in mammalian sympathetic ganglia, Proc. Natl Acad. Sci. USA 75: 4029.

    PubMed  CAS  Google Scholar 

  • Dun, N.J., Kaibara, K., and Karczmar, A.G., 1977a, Direct postsynaptic membrane effect of dibutyryl cyclic GMP on mammalian sympathetic neurons, Neuropharmacology 16: 115.

    Google Scholar 

  • Dun, N.J., Kaibara, K., andKarczmar, A.G., 1977b, Dopamine and adenosine 3’5’-mono- phosphate responses of single mammalian sympathetic neurons, Science 197: 118.

    Google Scholar 

  • Dura, G., Illes, I., Major, M., and Goenczi, C., 1975, Neurophysiological investigations with an organic phosphate compound, Acta. Physiol Acad. Sci. Hung. 44: 313.

    Google Scholar 

  • Eccles, J.C., 1973, “The Understanding of the brain,” McGraw Hill Co., New York.

    Google Scholar 

  • Eccles, J.C., Fatt, P., and Koketsu, K., 1954, Cholinergic and inhibitory synapses in a pathway from motor-axon collaterals to motoneurons, J. Physiol. (Lond) 126: 524.

    CAS  Google Scholar 

  • Echlin, F.A., 1975, Time course of development of supersensitivity to topical acetyl-choline in partially isolated cortex, Electroencephalogr. Clin. Neurophysiol. 38: 225.

    PubMed  CAS  Google Scholar 

  • Echlin, F.A., and McDonald, J., 1954, The supersensitivity of chronically isolated cerebral cortex as a mechanisms in focal cortical epilepsy, Trans. Am. Neurol. Assoc. 79: 15.

    Google Scholar 

  • Endroczi, E., Schreiberg, G., and Lissak, K., 1963a, The role of central nervous activating and inhibitory structures in the control of pituitary-adrenocortical function. Effects of intracerebral cholinergic and adrenergic stimulation, Acta Physiol. Acad. Sci. Hung. 24: 211.

    Google Scholar 

  • Endroczi, E., Hartmann, G., and Lissak, K., 1963b, Effect of intracerebrally adminis-tered cholinergic and adrenergic drugs on neocortical and archicortical electrical activity, Acta Physiol Acad. Sci. Hung. 24: 199.

    Google Scholar 

  • Essig, C.F., Hampson, J.L., Bales, P.D., Willis, A., and Himwich, H.E., 1950, Effect of panparnit on brain wave changes induced by DFP, Science 111: 38.

    PubMed  CAS  Google Scholar 

  • Essman, W.B., 1972, Neurochemical changes in ECS and ECT, Semin. Psychiatry 4: 61.

    Google Scholar 

  • Everett, G.M., 1974, Pharmacological studies of oxotremorine, in “Biochemical and Neurophysiological Correlates of Centrally Acting Drugs” (E. Trabucchi, R. Paoletti, and N. Canal., eds.), pp. 69–74, Pergamon Press, Oxford.

    Google Scholar 

  • Fairchild, M.D., Jenden, D.J., and Mickey, M.R., 1975, An application of long-term frequency analysis in measuring drug-specific alterations in the EEG of the cat, Electroencephalogr. Clin. Neurophysiol. 38: 331.

    Google Scholar 

  • Feldberg, W., and Fleishhauer, K., 1963, The hippocampus as the site of origin of the seizure discharge produced by tubocurarine acting from the cerebral ventricles, J. Physiol (Lond.) 168: 435.

    CAS  Google Scholar 

  • Feldbeig, W., and Vogt, M., 1948, Acetylcholine synthesis in different regions of the central nervous system, J. Physiol (Lond.) 107: 313.

    Google Scholar 

  • Ferguson, J.H., and Cornblath, D.R., 1975, Acetylcholine epilepsy: relationship of surface concentration, chronicity of denervation, and focus size, Exp. Neurol 46: 302.

    PubMed  CAS  Google Scholar 

  • Ferguson, J.H., and Jasper, H.H., 1971, Laminar DC studies of acetylcholine-activated epileptiform discharge in cerebral cortex, Electroencephalogr. Clin. Neurophysiol 30: 311.

    Google Scholar 

  • Fink, M., 1966, Cholinergic aspects of convulsive therapy, J. Nerv. Ment. Dis. 24: 415.

    Google Scholar 

  • Floris, V., Morocutti, G., and Ayala, G.F., 1963, Azione della nicotina sulla attivita bioelectrica della corteccia, del talamo e dell’ ippocampo nel cognilio. Sull ‘azione di “arousal” e convulsivante primitiva sulle strutture ippocampo-talamiche, Boll Soc. Ital. Biol Sper. 38: 401.

    Google Scholar 

  • Fonnum, F., 1973, Recent developments in biochemical investigations of cholinergic transmission, Brain Res. 62: 495.

    Google Scholar 

  • Frazier, D.T., and Boyarski, L.L., 1967, Cholinergic properties of the relay functions of the primary afferent pathways, J. Pharmacol Exp. Ther. 156: 1.

    PubMed  CAS  Google Scholar 

  • Gadea-Ciria, M., Stadler, H., Lloyd, K.G., and Bartholini, G., 1973, Acetylcholine release within the cat striatum during the sleep-wakefulness cycle, Nature 243: 518.

    PubMed  CAS  Google Scholar 

  • Gardner, C.R., and Webster, R.A., 1977, Convulsant-anticonvulsant interactions on seizure activity and cortical acetylcholine release, Eur. J. Pharmacol 42: 241.

    Google Scholar 

  • Garrattini, S., Pujol, J.F., and Samanin, R., 1978, “Interactions Between Putative Neurotransmitters in the Brain,” Raven Press, New York.

    Google Scholar 

  • Gastaut, H., and Fischer-Williams, M., 1959, The physiopathology of epileptic seizures, in “Handbook of Physiology Sect I: Neurophysiology” (J. Fields, ed.), pp. 329–363.

    Google Scholar 

  • George, R., Haslett, W.L., and Jenden, D.J., 1964, A cholinergic mechanism in the brain stem reticular formation: Induction of paradoxical sleep, Int. J. Neuropharmacol 3: 541.

    PubMed  CAS  Google Scholar 

  • Giorguieff, M.F., Le Floc’H, M.L., Glowinski, J., and Besson, M.J., 1977, Involvement of cholinergic presynaptic receptors of nicotinic and muscarinic types in the control of the spontaneous release of dopamine from striatal dopaminergic terminals in the rat, J. Pharmacol Exp. Ther. 200: 535.

    PubMed  CAS  Google Scholar 

  • Glisson, S.N., Karczmar, A.G., and Barnes, L., 1974, Effects of DFP on acetylcholine, cholinesterase and catecholamines of several rabbit brain parts, Neuropharmacol 13: 623.

    CAS  Google Scholar 

  • Glowinski, J., and Karczmar, A.G., in press a, Interdependence of neurotransmitter systems in the CNS, in “Proceedings of the Seventh International Congress of Pharmacology” (J. Glowinski, and A.G. Karczmar, eds.), Pergamon Press, Oxford.

    Google Scholar 

  • Glowinski, J., and Karczmar, A.G., in press b, Concluding remarks on the symposium: Interdependence of neurotransmitter systems in the CNS, in “Proceedings of the Seventh International Congress of Pharmacology” (J. Glowinski, and A.G. Karczmar, eds.), Pergamon Press, Oxford.

    Google Scholar 

  • Greer, C.A., and Alpern, H.P., 1977, Mediation of myoclonic seizures by dopamine and clonic seizures by acetylcholine and GABA, Life Sci. 27: 385.

    Google Scholar 

  • Guerrero-Figueroa, R., Verster, F., DeB., Barros, A., and Heath, R.C., 1964, Cholinergic mechanisms in subcortical mirror focus and effects of topical application of 7-amino- butyric acid and acetylcholine, Epilepsia 5: 140.

    CAS  Google Scholar 

  • Guggenheimer, E.H., and Levinger, I.M., 1975, The effect of oxotremorine on the acetylcholine output from the CSF containing spaces, Experientia 31: 88.

    PubMed  CAS  Google Scholar 

  • Guha, D., and Pradhan, S.N., 1976, Effects of nicotine on EEG and evoked potentials and their interactions with autonomic drugs, Neuropharmacology 15: 225.

    PubMed  CAS  Google Scholar 

  • Guyenet, P., Agid, Y., Javoy, F., Beaujouan, J.C., Rossier, J., and Glowinski, J., 1975, Effects of dopaminergic receptor agonists and antagonists on the activity of the neostriatal cholinergic system, Brain Res. 84: 221.

    Google Scholar 

  • Hall, R.C., and Keane, P.E., 1975, Dopaminergic and cholinergic interactions in the caudate nucleus in relation to the induction of sleep in the cat, Br. J. Pharmacol. 54: 247.

    Google Scholar 

  • Hanigan, W.C., Scudder, C.L., and Karczmar, A.G., 1970, Adrenergic, serotonergic and cholinergic systems and electroconvulsive seizures in mice, Fed. Proc. 29: 486.

    Google Scholar 

  • Hanin, I., and Costa, E., 1976, Approaches used to estimate brain acetylcholine turnover rate in vivo; effects of drugs on brain acetylcholine turnover rate, in “Biology of Cholinergic Function” (A.M. Goldberg, and I. Hanin, eds.), pp. 355–377, Raven Press, New York.

    Google Scholar 

  • Haranath, P.S.R.K., Indira, G., and Krishnamurthy, A., 1977, Effects of cholinomimetic drugs and their antagonists injected into vertebral artery of unanaesthetized dogs, Pharmacol Biochem. Behav. 6: 259.

    PubMed  CAS  Google Scholar 

  • Hemsworth, B.A., and Neal, M.J., 1968, The effect of central stimulant drugs on the release of acetylcholine from the cerebral cortex, Br. J. Pharmacol 32: 543.

    Google Scholar 

  • Hernandez-Peon, R., 1962, Sleep induced by localized or chemical stimulation of the foreBrain, jElectroencephalogr. Clin. Neurophysiol. 14: 423.

    Google Scholar 

  • Hernandez-Peon, R., 1965, Central neurohumoral transmission in sleep and wakefulness, in “Progress in brain Research, Sleep Mechanisms” (K. Akert, C. Bally, and J.P. Schade, eds.), pp. 96–116, Elsevier, Amsterdam.

    Google Scholar 

  • Hernandez-Peon, R., and Chavez-Ibarra, G., 1963, Sleep induced by electrical or chemical stimulation of the foreBrain, Electro encephalogr. Clin. Neurophysiol. (Suppl) 24: 188.

    Google Scholar 

  • Hernandez-Peon, R., Chavez-Ibarra, G., Morgane, P.J., and Timolaria, C., 1963, Limbic cholinergic pathways involved in sleep and behaviour, Exp. Neurol. 8: 93.

    Google Scholar 

  • Herz, A., and Zieglgansberger, W., 1968, The influence of microelectrophoretically applied biogenic amines, cholinomimetics and procaine on synaptic excitation in the corpus striatum, Int. J. Neuropharmacol. 7: 221.

    PubMed  CAS  Google Scholar 

  • Hill, R.C., Simmonds, M.A., and Straughan, D.W., 1972, Convulsive properties of d- tubocurarine and cortical inhibition, Nature 240: 51.

    PubMed  CAS  Google Scholar 

  • Hingtgen, J.N., and Aprison, M.H., 1976, Behavioral and environmental aspects of the cholinergic system, in “Biology of Cholinergic Function” (A.M. Goldberg, and I. Hanin, eds.), pp. 515–566, Raven Press, New York.

    Google Scholar 

  • Hobson, J.A., 1974, The cellular basis of sleep cycle control, in “Advances in Sleep Research” ( E.D. Weitzman, ed.), pp. 217–250, Spectrum, New York.

    Google Scholar 

  • Hokfelt, T., in press, Interdependence of neurotransmitter systems, anatomical basis, in “Interdependence of Neurotransmitter Systems in the CNS,” (J. Glowinski and A.G. Karczmar, eds.), Pergamon Press, Oxford.

    Google Scholar 

  • Holmstedt, B., 1959, Pharmacology of organophosphorus anticholinesterase agents, Pharmacol Rev. 11: 561.

    Google Scholar 

  • Hoover, D.B., Craig, C.R., and Colasanti, B.K., 1977, Cholinergic involvement in cobalt induced epilepsy in the rat, Exp. Brain Res. 29: 501.

    PubMed  CAS  Google Scholar 

  • Ikonomoff, S.I., 1970, Anticholinesterase drugs and epileptic seizures, Br. J. Psychiatry 177: 619.

    Google Scholar 

  • Irmi, S.F., 1974a, Correlation between spontaneous behavior and cortical or hippocampal EEG in rats — dissociation after physostigmine, Acta. Nerv. Super. (Prague) 76: 48.

    Google Scholar 

  • Irmi, S.F., 1974b, Effects of scopolamine on EEG of cortex and hippocampus during spontaneous behavior in rat, Acta. Nerv. Super. (Prague) 16: 220.

    Google Scholar 

  • Irmi, S.F., 1977, Cortical and hippocampal EEG during spontaneous behavior in rats: Normal conditions and anticholinergic drugs proceedings, Acta. Nerv. Super. (Prague) 79: 145.

    Google Scholar 

  • Iwata, N., Sakai, Y., and Deguchi, T., 1971, Effects of physostigmine on the inhibition of trigeminal motoneurons by cutaneous impulses in the cat, Exp. Brain Res. 13: 519.

    PubMed  CAS  Google Scholar 

  • Jacobowitz, D.M., 1978, Histochemical and micropunch analysis of aminergic and cholinergic pathways in the brain, in “Interrelationship Between Various Neurotransmitter Systems” (A.G. Karczmar, and J. Glowinski, eds.), Pergamon Press (in press).

    Google Scholar 

  • Jacobs, B.L., Henriksen, S.J., and Dement, W.C., 1972, Neurochemical bases of the PGO waves, Brain Res. 58: 157.

    Google Scholar 

  • Jalfre, M., Ruch-Monachon, M.A., and Haefely, W., 1974, Methods for assessing the interaction of agents with 5-hydroxytryptamine neurone and receptors in the brain, in “Advances in Biochemistry andPsychopharmacology,” ( E. Costa, and P. Greengard, eds.), pp. 121–134, Raven Press, New York.

    Google Scholar 

  • Jalowiec, J.E., Morgane, P.J., Stern, W.C., Zolovick, A.J., and Panksepp, J., 1973, Effects of midBrain tegmental lesions on sleep and regional brain serotonin and norepinephrine levels in cats, Exp. Neurol. 41: 610.

    Google Scholar 

  • Jasper, H.H., and Tessier, J., 1971, Acetylcholine liberation from cerebral cortex during paradoxical (REM) sleep, Science 172: 601.

    PubMed  CAS  Google Scholar 

  • Javoy, F., Euvrard, C., Bockaert, J., and Glowinski, J., 1978, Action of “gabaminergic” and “serotonergic” drugs on the activity of striatal cholinergic interneurons, in “Interrelationship Between Various Neurotransmitter Systems” (A.G. Karczmar, and J. Glowinski, eds.), Pergamon Press, (in press).

    Google Scholar 

  • Jenden, D.J., 1977, Estimation of acetylcholine and the dynamics of its metabolism, in “Cholinergic Mechanisms and Psychopharmacology” (D.J. Jenden, ed.), pp. 139–162, Plenum Press, New York.

    Google Scholar 

  • Jewett, R.E., and Norton, S., 1966, Effects of some stimulant and depressant drugs on sleep cycles of cats,Exrp. Neurol. 15: 463.

    Google Scholar 

  • Jouvet, M., 1961, Telencephalic and rhombencephalic sleep in the cat, in “The Nature of Sleep” (G.E.W. Wolstenholme, and M. O’Conner, eds.), pp. 188’208, J. & A. Churchill, London.

    Google Scholar 

  • Jouvet, M., 1967, Neurophysiology of the states of sleep, in “The Neuro Sciences, A Study Program” (G.C. Quarton, T. Melnechuk, and F.U. Schmitt, eds.), pp. 529–544, University Press, New York.

    Google Scholar 

  • Jouvet, M., 1972, Some monoaminergic mechanisms controlling sleep and waking, in “Brain and Human Behavior” (A.G. Karczmar, and J.C. Eccles, eds.), pp. 131–160, Springer-Verlag, Berlin.

    Google Scholar 

  • Jouvet, M., 1975, Cholinergic mechanisms and sleep, in “Cholinergic Mechanisms” (P. Waser, ed.), pp. 455–476, Raven Press, New York.

    Google Scholar 

  • Karczmar, A.G., 1967, Pharmacologic, toxicologic and therapeutic properties of anti-cholinesterase agents, in “Physiological Pharmacology” (W.S. Root, and F.G. Hofman, eds.), pp. 163–322, Academic Press, New York.

    Google Scholar 

  • Karczmar, A.G., 1970a, Central cholinergic pathways and their behavioral implications, in “Principles of Psychopharmacology” (W.G. Clark, and J. del Giudice, eds.), pp. 57–86, Academic Press, New York.

    Google Scholar 

  • Karczmar, A.G., 1970b, History of the research with anticholinergic agents, in “Anti-cholinesterase Agents” (A.G. Karczmar, ed.), pp. 1–44, International Encyclopedia of Pharmacology and Therapeutics, Vol. 1, Section 13, Pergamon Press, Inc., Oxford.

    Google Scholar 

  • Karczmar, A.G., 1971, Possible mechanisms underlying the so-called “Divorce” phenomena of EEG desynchronizing actions of anticholinesterases, Presented at the Regional Midwest EEG Meeting, April 1971, Hines, V.A. Hospital.

    Google Scholar 

  • Karczmar, A.G., 1974a, The chemical coding via the cholinergic system: its organization and behavioral implications, in “Neurochemical Coding of Brain Function” (R.D. Myers, and R.R. Drucker-Colin, eds.), pp. 399–418, Adv. in Behav. Biol. Vol. 10, Plenum Press, New York.

    Google Scholar 

  • Karczmar, A.G., 1974b, Brain acetylcholine and seizures, in “Psychobiology of Convulsive Therapy” (M. Fink, S. Kety, J. McGaugh, and T.A. Williams, eds.), pp. 251–270, V. H. Winston, Washington, D.C.

    Google Scholar 

  • Karczmar, A.G., 1975, Cholinergic influences on behavior, in “Cholinergic Mechanisms” (P.G. Waser, ed.), pp. 501–529, Raven Press, New York.

    Google Scholar 

  • Karczmar, A.G., 1976, Central actions of acetylcholine, cholinomimetics, and related drugs, in “Biology of Cholinergic Function” (A.M. Goldberg, and I. Hanin, eds.), pp. 395–449, Raven Press, New York.

    Google Scholar 

  • Karczmar, A.G., 1977, Exploitable aspects of central cholinergic function, particularly with respect to the EEG, motor, analgesic and mental functions, in “Cholinergic Mechanisms and Psychopharmacology” (D.J. Jenden, ed.), pp. 679–708, Plenum Press, New York.

    Google Scholar 

  • Karczmar, A.G., 1978, Multitransmitter mechanisms underlying selected function, particularly aggression, learning and sexual behavior, in “Interdependence Between Various Neurotransmitter Systems” (A.G. Karczmar, and J. Glowinski, eds.), pp. 581–608, Pergamon Press, Oxford.

    Google Scholar 

  • Karczmar, A.G., in press, Mechanisms and clinical uses of peripherally and centrally acting cholinergic and anticholinergic drugs, Drug Therapy.

    Google Scholar 

  • Karczmar, A.G., and Dun, N.J., 1978, Cholinergic synapses: Physiological, pharmacological and behavioral considerations, in “Psychopharmacology: A Generation of Progress” (M.A. Lipton, A. DiMascio, and K.F. Killam, eds.), pp. 293–305, Raven Press, New York.

    Google Scholar 

  • Karczmar, A.G., and Glowinski, J., 1978, Interrelationships between various neurotransmitter systems, in Neuropsychopharmacology Proceedings of the Tenth Congress CINP ( P. Deniker, C. Radouco-Thomas, and A. Villeneuve, eds.), Pergamon Press, Oxford.

    Google Scholar 

  • Karczmar, A.G., Blachut, K., Ridlon, S., Gothelf, B., and Awad, O., 1963, Pharmacological actions in various neuroeffectors of single and combined administration of EPN and Malathion, Int. J. Neuropharmacol 2: 163.

    CAS  Google Scholar 

  • Karczmar, A.G., Longo, V.G., et al., 1970, Pharmacological model of paradoxical sleep: the role of cholinergic and monoamine systems, Physiol Behav. 5: 175.

    PubMed  CAS  Google Scholar 

  • Karczmar, A.G., Scudder, C.L., and Richardson, D.L., 1973, Interdisciplinary approach to the study of behavior in related mice types, in “Neuro Sciences Research” (I. Kopin, ed.), pp. 159–244, Academic Press, New York.

    Google Scholar 

  • Kawamura, H., and Domino, EJ., 1969, Differential actions of m and n cholinergic agonists on the Brainstem activating system, Int. J. Neuropharmacol. 8: 105.

    PubMed  CAS  Google Scholar 

  • Key, B.J., and Krzywoskinski, L., 1977, Electrocortical changes induced by the perfusion of noradrenaline, acetylcholine and their antagonists directly into the dorsal raphe nucleus of the cat, Br. J. Pharmacol 61: 291.

    Google Scholar 

  • Khinkova, L., Kaloianova, F., Dimov, S., and Atsev, E., 1975, Comparative study of the changes in the EEG and cholinesterase activity in experimental dipterex poisoning, Probl Khig. 1: 39.

    PubMed  CAS  Google Scholar 

  • Kidokoro, Y., Kubota, K., Shuto, S., and Sumino, R., 1968, Possible interneurons responsible for reflex inhibition of motoneurons of jaw-closing muscles from inferior dental nerve, J. Neurophysiol. 31: 109.

    Google Scholar 

  • Kingsley, R.E., and Barnes, C.B., 1973, Olivo-cochlear inhibition during physostigmine- induced activity in pontal reticular formation in decerebrate cat, Exp. Neurol. 40: 43.

    PubMed  CAS  Google Scholar 

  • Klawans, H.A., Westheimer, R., and Goetz, C.G., 1976, A pharmacological model of the pathophysiology of schizophrenia, Dis. Nerv. Syst. 36: 261.

    Google Scholar 

  • Klemm, W.R., 1976, Physiological and behavioral significance of hippocampal rhythmic, slow activity (“Theta rhythm”), Prog. Neurobiol. 6: 23.

    PubMed  CAS  Google Scholar 

  • Knott, J.R., Ingram, W.R., and Correll, P.E., 1960, Some effects of subcortical stimulation on the bar pressing response, Arch. Neurol. 2: 416.

    Google Scholar 

  • Koehn, G.L., and Karczmar, A.G., 1978, Effect of diisopropylphosphofluoridate on analgesia and motor behavior in the rat, Prog. Neuropsychopharmacol. 2: 169.

    CAS  Google Scholar 

  • Koelle, G.B., 1963, Cytological distributions and physiological functions of choline-sterases, in “Handbuch der Experimentellen Pharmakologie, Ergazungswk, Choline- sterases and Anticholinesterase Agents, Vol. 15” (G.B. Koelle, ed.), pp. 189–298, Springer-Verlag, Berlin.

    Google Scholar 

  • Koelle, G.B., 1969, Significance of acetylcholinesterase in central synaptic transmission, Fed.Proc. 28: 95.

    PubMed  CAS  Google Scholar 

  • Koelle, G.B., Koelle, W.A., Smyrl, E.G., Davis, R., and Nagle, A.F., 1977, Histochemical and pharmacological evidence of the function of butyrylcholinesterase, in “Cholinergic Mechanisms and Psychopharmacology” (D. J. Jenden, ed.), pp. 125–138, Plenum Press, New York.

    Google Scholar 

  • Koller, W.C., and Berry, C.A., 1976, Modification of evoked responses in the caudate nucleus by cholinergic agents, Neuropharmacology 15: 233.

    PubMed  CAS  Google Scholar 

  • Korsak, R.J., and Sato, M.M., 1977, Effects of chronic organophosphate pesticide exposure on the central nervous system, Clin. Toxicol 11: 83.

    PubMed  CAS  Google Scholar 

  • Kostowski, W., 1971, Effects of some cholinergic and anticholinergic drugs injected intracerebrally to the midline pontine area, Neuropharmacology 10: 595.

    PubMed  CAS  Google Scholar 

  • Kramis, R., Vanderwolf, C.H., and Bland, B.H., 1975, Two types of hippocampal rhythmical slow activity in both rabbit and the rat: relations to behavior and effects of atropine, diethyl ether, urethane, and pentobarbital, Exp. Neurol 49: 58.

    PubMed  CAS  Google Scholar 

  • Krnjevic, K., 1969, Central cholinergic pathways, in “Central Cholinergic Transmission and its Behavioral Aspects” (A.G. Karczmar, ed.), Fed. Proc. 28:115.

    Google Scholar 

  • Krnjevic, K., 1974, Chemical nature of synaptic transmission in vertebrates, Physiol Rev. 54: 418.

    CAS  Google Scholar 

  • Krnjevic, K., 1976, Acetylcholine receptors in vertebrate CNS, in “Handbook of Psychopharmacology” (L.L. Iversen, S.D. Iversen, and S.H. Snyder, eds.), pp. 97–125, Plenum Press, New York.

    Google Scholar 

  • Krnjevic, K., and Van Meter, W.G., 1976, Cyclic nucleotides in spinal cells, Can. J. Physiol. Pharmacol 54: 416.

    PubMed  CAS  Google Scholar 

  • Krnjevic, K., Puil, E., and Werman, R., 1976, Is cyclic guanosine monophosphate the internal “second messenger” for cholinergic actions on central neurons? Can. J. Physiol Pharmacol 54: 112.

    Google Scholar 

  • Kubota, K., Kidokoro, Y., and Suzuki, J., 1968, Postsynaptic inhibition of trigeminal and lumbar motoneurons from the superficial radial nerve of the cat, Jpn. J. Physiol 18: 198.

    PubMed  CAS  Google Scholar 

  • Kuhar, M.J., 1973, Neurotransmitter uptake: a tool in identifying neurotransmitter-specifïc pathways, Life Sci. 13: 1623.

    PubMed  CAS  Google Scholar 

  • Kuhar, M.J., 1976, The anatomy of cholinergic neurons, in “Biology of Cholinergic Function” (A.M. Goldberg, and I. Hanin, eds.), pp. 3–27, Raven Press, New York.

    Google Scholar 

  • Kuhar, M.J., and Yamamura, H.I., 1976, Localization of cholinergic muscarinic receptors in rat brain by light microscopic radioautography, Brain Res. 110: 229.

    PubMed  CAS  Google Scholar 

  • Kumagai, H., Sakai, F., and Otsuka, Y., 1962a, EEG responses to subcortical microinjection of d-tubocurarine chloride and other drugs in cats, Arch. Int. Pharmacodyn Ther. 139: 588.

    CAS  Google Scholar 

  • Kumagai, H., Sakai, F., and Otsuka, Y., 1962b, Analysis of central effect of d-tubocurarine chloride in the cat, Int. J. Neuropharmacol. 7: 157.

    Google Scholar 

  • Kupfer, D.J., and Edwards, D.J., 1978, Multitransmitter mechanisms and treatment of affective disease, in “Interrelationship Between Various Neurotransmitter Systems” (A.G. Karczmar, and J. Glowinski, eds.), Pergamon Press, Oxford (in press).

    Google Scholar 

  • Kurokawa, M., Machiyama, Y., and Kato, M., 1963, Distribution of acetylcholine in the brain during various states of activity, J. Neurochem. 10: 341.

    PubMed  CAS  Google Scholar 

  • Langlois, J.M., and Poussart, Y., 1969, Electrocortical activity following cholinergic stimulation of the caudate nucleus in the cat, Brain Res. 75: 581.

    Google Scholar 

  • Levy, J., and Michel-Ber, E., 1967, Contribution a Fetude des cholinergiques et cholinolytiques centraux et perpheriques. II. Activites cholinergiques centrales de l’oxotremorine, Therapie 22: 87.

    CAS  Google Scholar 

  • Lewis, P.R., and Shute, C.C.D., 1967, The cholinergic limbic system: projections to hippocampal formation, medial cortex, nuclei of the ascending cholinergic reticular system, and the subfornical organs and supra-optic crest, Brain 90: 521.

    PubMed  CAS  Google Scholar 

  • Libet, B., 1970, Generation of slow inhibitory and excitatory postsynaptic potentials, Fed. Proc. 29: 1945.

    PubMed  CAS  Google Scholar 

  • Lipp, J.A., 1972, Effect of diazepam upon soman-induced seizure activity and convulsions, EEG Clin. Neurophysiol. 32: 557.

    CAS  Google Scholar 

  • Iipp, J.A., 1973, Effect of benzodiazepine derivatives on soman-induced seizure activity and convulsions in the monkey, Arch. Int. Pharmacodyn. Ther. 202: 244.

    Google Scholar 

  • Lipp, J.A., 1974, Effect of small doses of clonazepam upon soman-induced seizure activity and convulsions, Arch. Int. Pharmacodyn Ther. 210: 49.

    CAS  Google Scholar 

  • Livett, B.G., 1973, Histochemical visualization of peripheral and central adrenergic neurons, Br. Med. Bull. 29: 93.

    PubMed  CAS  Google Scholar 

  • Lloyd, K.G., 1975, Special chemistry of the basal ganglia. 2. Distribution of acetylcholine, choline acetyltransferase and acetylcholinesterase, Pharmacol. Ther. (b) 1: 49.

    CAS  Google Scholar 

  • Loewi, O., 1937, Strychninerregung und Acetylcholingehalt des Zentralnervensystems, Naturwiss 25: 526.

    CAS  Google Scholar 

  • Longo, V.G., 1958, Effects of scopolamine and atropine on electroencephalorganic and behavioral reactions due to hypothalamic stimulation, J. Pharmacol. Exp. Ther. 116: 198.

    Google Scholar 

  • Longo, V.G., 1962, “Electroencephalograhic Atlas for Pharmacological Research,” Elsevier, Amsterdam.

    Google Scholar 

  • Longo, V.G., 1966, Mechanisms of the behavioral and electroencephalographic effects of atropine and related compounds, Pharmacol. Rev. 1: 965.

    Google Scholar 

  • Longo, V.G., and Loizzo, A., 1973, Effects of drugs on hippocampal O-rhythm. Possible relationships to learning and memory processes, in ‘‘Brain, Nerves and Synapses’’ (F.E. Bloom, and G.H. Acheson, eds.), pp. 46–54, Karger, Basel.

    Google Scholar 

  • Longo, V.G., and Silvestrini, G., 1957, Action of eserine and amphetamine on the electrical activity of rabbit Brain, J. Pharmacol. Exp. Ther. 120: 160.

    PubMed  CAS  Google Scholar 

  • Longo, V.G., Von Berger, G.P., and Bouvet, D., 1954, Action of nicotine and of the “ganglioplegiques centraux” on the electrical activity of the Brain, J. Pharmacol. Exp. Ther. 111: 349.

    PubMed  CAS  Google Scholar 

  • Longo, V.G., Giunta, F., et al., 1967, Effect of nicotine on the electroencephalogram of the rabbit, Ann. NY Acad. Sci. 142: 159–169.

    CAS  Google Scholar 

  • Longoni, R., Mulas, A., Oderfeld-Novak, B., Marconcini, I., and Pepeu, G., 1976, Effect of single and repeated electroshock applications on brain acetyltransferase activity in the rat, Neuropharmacology 75: 283.

    Google Scholar 

  • Losey, N.A., 1977, Effect of arecoline, phenamine and ethimizol on the distribution of electroencephalographic frequency characteristics, Farmakol. Toksikol. 40: 389.

    Google Scholar 

  • Luduena, F.P., and Hoppe, J.O., 1952, Local anesthetic activity, toxicity and irritancy of 2-alkoxy analogs of procaine and tetracaine, J. Pharmacol. Exp. Ther. 104: 40.

    PubMed  CAS  Google Scholar 

  • Lundholm, B., and Sparf, B., 1975, The effect of atropine on the turnover of acetylcholine in the mouse brain, Eur. J. Pharmacol. 32(02): 287.

    Google Scholar 

  • Lynch, H.D., and Anderson, M.H., 1976, Atropine coma therapy in psychiatry: clinical observations over a 20 year period and a review of the literature, Dis. Nerv. Syst. 30: 648.

    Google Scholar 

  • Machne, K., and Unna, K.R.W., 1963, Actions at the central nervous system, in “Hand-buch der Experimentellen Pharmakologie, Erganzungswk, Vol. 15” (G.B. Koelle, ed.), pp. 679–700, Springer-Verlag, Berlin.

    Google Scholar 

  • Macintosh, F.C., and Collier, B., 1976, Neurochemistry of cholinergic terminals, in “Handbuck der Experimentellen Pharmakologie, Erganzungswk, Neuromuscular Junction, Vol 42”(E. Jaimis, ed.), pp. 99–228, Springer-Verlag, Berlin.

    Google Scholar 

  • MacLean, P.D., Flanigan, S., Flynn, J.P., Kim, C., and Stevens, J.R., 1955, Hippocampal function: tentative correlations of conditioning, EEG, drug and radioautographic studies, Yale J. Biol Med. 23: 389.

    Google Scholar 

  • Macphail, E.M., 1969, Cholinergic stimulation of dove diencephalon: A comparative study, Physiol Behav. 4: 655.

    Google Scholar 

  • Magherini, P.C., Pompeiano, O., and Thoden, U., 1971, The neurochemical basis of REM sleep: A cholinergic mechanism responsible for rhythmic activation of the vestibulo-occulomotor system, Brain Res. 35: 565.

    PubMed  CAS  Google Scholar 

  • Magherini, P.C., Pompeiano, O., Thoden, U., 1972, Cholinergic mechanisms related to REM deep. I. Rhythmic activity of the vestibulo-oculomotor system induced by an anticholinesterase in the decerebrate cat, Arch. Int. Biol. 110: 234.

    CAS  Google Scholar 

  • Maiti, A., and Domino, E.F., 1961, Effects of methylated xanthines on the neuronally isolated cerebral cortex, Exp. Neurol 3: 18.

    PubMed  CAS  Google Scholar 

  • Marczynski, T.J., 1967, Topical application of drugs to subcortical brain structures and related aspects of electrical stimulation, Ergebn. d. Physiol Biol Chem. Exp. Pharmakol. 59: 86.

    CAS  Google Scholar 

  • Marczynski, T.J., 1969, Invited discussion: postreinforcement synchronization and the cholinergic system, in “Symposium on Central Cholinergic Transmission and Its Behavioral Aspects” (A.G. Karczmar, ed.),Fed. Proc. 28:132.

    Google Scholar 

  • Marczynski, T.J., 1971, Cholinergic mechanism determines the occurrence of reward contingent positive variation (RCPV) in cat, Brain Res. 28: 71.

    PubMed  CAS  Google Scholar 

  • Marczynski, T.J., and Burns, L.L., 1976, Reward contingent positive variation (RCPV) and post-reinforcement EEG synchronization (PRS) in the cat: Physiological aspects, the effects of morphine and LSD-25, and a new interpretation of cholinergic mechanisms, Gen. Pharmacol 7: 211.

    PubMed  CAS  Google Scholar 

  • Marczynski, T.J., Rosen, A.J., and Hackett, J.T., 1968, Postreinforcement electrocortical synchronization and facilitation of cortical auditory potentials in appetitive instrumental conditioning, Electroencephalogr. Clin. Neurophysiol 24: 221.

    Google Scholar 

  • Marley, E., and Seller, T.J., 1972, Effects of muscarine given into the brain of fowls, Br. J. Pharmacol. 44: 413.

    PubMed  CAS  Google Scholar 

  • Maulsby, R.L., 1971, An illustration of emotionally evoked theta rhythm in infancy: Hedonic hypersynchrony, Electroencephalogr. Clin. Neurophysiol 31: 151.

    Google Scholar 

  • Maynert, E.W., Marczynski, T.J., and Browning, R.A., 1975, The role of the neuro-transmitters in the epilepsies, Adv. Neurol 13: 19.

    Google Scholar 

  • McKenna, T., McCarley, R.W., Amatruda, T., Black, D., and Hobson, J.A., 1974, Effects of carbachol at pontine sites yielding long duration desynchronized sleep episodes, in “Sleep Research” (M.H. Chase, W.C. Stern, and P.L. Walter, eds.), BIS/BRI, Los Angeles.

    Google Scholar 

  • Mergner, T., Magherini, P.C., and Pompeiano, O., 1976, Temporal distribution of rapid eye movements and related monophasic potentials in the brain stem following injection of an anticholinesterase, Arch. Int. Biol 114: 15.

    Google Scholar 

  • Miller, R.F., Stavraky, G.W., and Woonton, G.A., 1940, Effects of eserine, acetylcholine and atropine on the electrocorticogram, J. Neurophysiol 5: 131.

    Google Scholar 

  • Minvielle, J., Cadilhac, J., and Passouant, M., 1954, Action of atropine on epileptics, Electroencephalogr. Clin. Neurophysiol 6: 162.

    Google Scholar 

  • Mirotvorskaia, G.N., 1968, Neurochemistry of epilepsy, Nevropatol Psikhiatr. 68: 609.

    CAS  Google Scholar 

  • Monnier, M., Kalberer, M., and Krupp, P., 1960, Functional antagonism between diffuse reticular and intralaminary recruiting projections in the medial thalamus, Exp. Neurol 2: 271.

    PubMed  CAS  Google Scholar 

  • Montplaisir, J.Y., 1975, Cholinergic mechanisms involved in cortical activation during arousal, Electroencephalogr. Clin. Neurophysiol. 38: 263.

    PubMed  CAS  Google Scholar 

  • Montplaisir, J.Y., and Sazie, E., 1973, Effects of eserine and scopolamine on neuronal after-discharges of the auditory cortex, Electroencephalogr. Clin. Neurophysiol. 35: 311.

    PubMed  CAS  Google Scholar 

  • Morrell, F., 1967, Electrical signs of sensory coding, in “The Neuro Sciences” (J.C. Quarton, T. Melnechuk, and F.O. Schmitt, eds.), pp. 452–468, Rockfeller Press, New York.

    Google Scholar 

  • Moruzzi, G., 1939, Contribution a l’electrophysiologic du cortex moteur: Facilitation, apres discharge et epilepsie corticales, Arch. Internatl Physiol. 49: 33.

    Google Scholar 

  • Moruzzi, G., and Magoun, H.W., 1949, Brain stem reticular formation and activation of the EEG, Electroencephalogr. Clin. Neurophysiol. 7: 455.

    Google Scholar 

  • Myers, R.D., 1974, “Handbook of Drug and Chemical Stimulation of the Brain,” Rein hold, New York.

    Google Scholar 

  • Naruse, H., Kato, M., Kurokawa, M., Haba, R., and Yabe, T., 1960, Metabolic defects in a convulsive strain of mouse, J. Neurochem. 5: 359.

    PubMed  CAS  Google Scholar 

  • Nauta, W.J.H., 1958, Hippocampal projections and related neural pathways to the mid-brain in the cat, Brain 81: 319.

    PubMed  CAS  Google Scholar 

  • Nicoll, R.A., 1975, The action of acetylcholine antagonists on amino acid responses in the frog spinal cord, Br. J. Pharmacol 55: 449.

    PubMed  CAS  Google Scholar 

  • Nishi, S., 1970, Cholinergic and adrenergic receptors at sympathetic preganglionic nerve terminals, Fed. Proc. 29: 1457.

    Google Scholar 

  • Nishi, S., 1974, Ganglionic transmission, in “The Peripheral Nervous System” (J.I. Hubbard, ed.), pp. 225–255, Plenum Press, New York.

    Google Scholar 

  • Nishi, S., Minota, S., and Karczmar, A.G., 1974, Primary afferent neurones: the ionic mechanism of GABA-mediated depolarization,Neuropharmacology 75: 215.

    Google Scholar 

  • Nistri, A., 1975, The effect of electrical stimulation and drugs on the release of acetyl-choline from the frog spinal cord, Naunyn Schmiedebergs Arch. Pharmacol 293: 269.

    Google Scholar 

  • Obrador, S., 1947, Hiperexcitabilidad de neurones motoras producida por aislamiento de areas de la corteza cerebral, Rev. Clin. Esp. 25: 171.

    Google Scholar 

  • Osumi, Y., Fujiwara, H., Oishi, R., and Takaori, S., 1975, Central cholinergic activation by chlorfenvinphos, and organophosphate in the rat, Jpn. J. Pharmacol 25: 41.

    Google Scholar 

  • Palkovits, M., and Jacobowitz, D.M., 1974, Topographic atlas of catecholamine and acetylcholinesterase-containing neurons in the rat brain. II. Hindbrain (mesencephalon, rhombencephalon), J. Comp. Neurol 157: 29.

    PubMed  CAS  Google Scholar 

  • Palkovits, M., Richardson, J.S., and Jacobowitz, D.M., 1974, A histochemical study of ventral tegmental acetylcholinesterases-containing pathway following destructive lesions, Brain Res. 81: 183.

    PubMed  CAS  Google Scholar 

  • Pedata, F., Mulas, A., Pepeu, I.M., and Pepeu, G., 1976, Changes in regional brain acetylcholine levels during drug-induced convulsions, Eur. J. Pharmacol 40: 329.

    PubMed  CAS  Google Scholar 

  • Penaloza-Rojas, J.H., and Zeidenweber, J., 1965, Local and EEG effects of adrenaline and acetylcholine application within the olfactory bulb, Electroencephalogr. Clin. Neurophysiol 19: 8 8.

    Google Scholar 

  • Pepeu, G., 1974, The release of acetylcholine from the brain: An approach to the study of the central cholinergic mechanisms, in “Progress in Neurobiology” ( G.A. Kerkut, and J.W. Phillis, eds.), pp. 257–288, Pergamon Press, Oxford.

    Google Scholar 

  • Pepeu, G., Nistri, A., and Mantovani, P., 1978, Influence of different putative neuro-transmitters on ACh release from the brain and spinal cord, in “Interrelationships Between Various Neurotransmitter Systems” (A.G. Karczmar, and J. Glowinski, eds.), Pergamon Press, (in press).

    Google Scholar 

  • Petsche, H., 1962, Practical problems of localization by the EEG, Electroencephalogr. Clin. Neurophysiol. 74: 791.

    Google Scholar 

  • Phan, D.V., Bite, A., and Gyorgy, L., 1974, Oxotremorine on behavior and EEG of reserpine — pretreated rats, Acta Physiol Acad. Sci. Hung. 45: 131.

    PubMed  CAS  Google Scholar 

  • Pierre, R., and Cahn, J., 1957, Considerations sur l‘utilite en electrophysiologe et en pharmacologic de l’evaluation quantitative de l’EEG. Quelques examples, in “International Symposium on Psychotropic Drugs” (S. Garattini, and V. Ghetti, eds.), pp. 299–300, Elsevier, Amsterdam.

    Google Scholar 

  • Phillis, J.W., and York, D.H., 1968, Pharmacological studies on a cholinergic inhibition in the cerebral cortex, Brain Res. 10: 291.

    Google Scholar 

  • Pompeiano, O., 1967, The neurophysiologies mechanisms of the postural and motor events during desynchronized sleep, Res. Publ. Assoc. Res. Nerv. Ment. Dis. 45: 351.

    PubMed  CAS  Google Scholar 

  • Pope, A., Morris, A.A., Jasper, H., Elliot, K.A.C., and Penfield, W., 1947, Histochemical and action potentials studies on epileptogenic areas of cerebral cortex in man and the monkey, Res. Publ. Assoc. Res. Nerv. Ment. Dis. 26: 218.

    CAS  Google Scholar 

  • Pryor, G.T., 1968, Postnatal development of Cholinesterase,acetylcholinesterase, aromatic 1-amino acid decarboxylase and monoamine oxidase in C57B116 and DBA2 mice, Life Sci. 7: 861.

    Google Scholar 

  • Pujol, J.F., in press, Reciprocal interactions between serotonergic neurons and nor-adrenergic neurons originating from the locus coeruleus in the CNS, in “Interdependence of Neurotransmitter Systems in the CNS” (J. Glowinski, and A.G. Karczmar, eds.), Pergamon Press, Oxford.

    Google Scholar 

  • Pujol, J.F., Keane, P.E., and Jouvet, M., 1978, Importance of interactions between transmitter systems in relation to regulation of the sleep-waking cycle, in “Interrelationships Between Various Neurotransmitter Systems” (A.G. Karczmar, and J. Glowinski, eds.), Pergamon Press, (in press).

    Google Scholar 

  • Purpura, D.P., 1974, Intracellular studies of thalamic synaptic mechanisms in evoked synchronization and desynchronization of electrocortical activity, in “Basic Sleep Mechanisms” (O. Petre-Quadens, and J.D. Schlag, eds.), pp. 99–125, Academic Press, New York.

    Google Scholar 

  • Purpura, D.P., Frygyesi, T.L., McMurty, J.G., and Scarf, T., 1966, Synaptic mechanisms in thalamic regulation of cerebello-cortical projection activity, in “Thalamus” (D.P. Purpura, and M.D. Yahr, eds.), pp. 153–170, Columbia University Press, New York.

    Google Scholar 

  • Radii-Weiss, T., 1974, Power spectral density of hippocampal theta activity during rhombencephalic sleep, after physostigmine administration and during orienting reaction, Act. Nerv. Super. (Praha) 16: 126.

    Google Scholar 

  • Randic, M., Sminoff, R., and Straughan, D.W., 1964, Acetylcholine depression of cortical neurones, Exp. Neurol. 9: 236.

    PubMed  CAS  Google Scholar 

  • Rech, R.H., and Domino, E.F., 1960, Effects of various drugs on activity of the neuronally isolated cerebral cortex, Exp. Neurol. 2: 364.

    PubMed  CAS  Google Scholar 

  • Reeves, C., 1966, Cholinergic synaptic transmission and its relationship to behavior, Psychol Bull 65: 321.

    PubMed  CAS  Google Scholar 

  • Richardson, I.W., and Szerb, J.C., 1974, The release of labelled acetylcholine and choline from cerebral cortical slices stimulated electrically, Br. J. Pharmacol 52: 499.

    PubMed  CAS  Google Scholar 

  • Richter, D., and Crossland, J., 1949, Variation in acetylcholine content of the brain with physiological state, Am. J. Physiol 159: 241.

    Google Scholar 

  • Rieger, H., Okonek, S., 1975a, Proceedings: The EEG in alkylphosphate poisoning (anticholinesterase insecticides), Electroencephalogr. Clin. Neurophysiol. 39: 555.

    PubMed  CAS  Google Scholar 

  • Rieger, H., and Okonek, S., 1975b, EEG in intoxication by cholinesterase inhibitors (organo-phosphate insecticides), Rev. Electroencephalogr. Neurophysiol Clin. 5: 98.

    PubMed  CAS  Google Scholar 

  • Rinaldi, R., and Himwich, H., 1955, Cholinergic mechanisms involved in function of mesodiencephalic activating system, Arch. Neurol Psychiatry 73: 394.

    Google Scholar 

  • Rojas-Ramirez, J.A., and Drucker-Colin, R.R., 1973, Sleep induced by spinal cord cholinergic stimulation, Int. J. Neurosci. 5: 215.

    PubMed  CAS  Google Scholar 

  • Roshchina, L.F., 1976, Electroencephalographs analysis of the central action of pyrazidol, Farmakol. Toksikol. 39: 391.

    Google Scholar 

  • Roth, R.H., and Bunney, B.S., 1976, Interaction of cholinergic neurons with other chemically defined neuronal systems in the CNS, in “Biology of Cholinergic Function” (A.M. Goldberg, and I. Hanin, eds.), pp. 379–394, Raven Press, New York.

    Google Scholar 

  • Ruch-Monachon, M.A., Jalfre, M., and Haefely, W., 1976a, Drugs and PGO waves in the lateral geniculate body of the curarized cat. I. PGO waves activity induced by R04-1284 and by b-chlorophenylalanine (PCPA) as a basis for neuropharmacological studies, Arch. Int. Pharmacodyn. Ther. 219: 205.

    Google Scholar 

  • Ruch-Monachon, M.A., Jalfre, M., and Haefely, W., 1976b, Drugs and PGO waves in the lateral geniculate body of the curarized cat. II. PGO wave activity and brain 5-hydroxy- tryptamine, Arch. Int. Pharmacodyn. Ther. 219: 269.

    PubMed  CAS  Google Scholar 

  • Ruch-Monachon, M.A., Jalfre, M., and Haefely, W., 1976c, Drugs and PGO waves in the lateral geniculate of the curarized cat. Ill PGO wave activity and brain catecholamines, Arch. Int. Pharmacodyn. Ther. 219: 281.

    Google Scholar 

  • Ruch-Monachon, M.A., Jalfre, M., and Haefely, W., 1976d, Drugs and PGO waves in the lateral geniculate body of the curarized cat. IV The effects of acetylcholine, GABA and benzodiazepines on PGO wave activity, Arch. Int. Pharmacodyn. Ther. 219: 308.

    PubMed  CAS  Google Scholar 

  • Ruch-Monachon, M.A., Jalfre, M., and Haefely, W., 1976e, Drugs and PGO waves in the lateral geniculate body of the curarized cat. V Miscellaneous compounds. Synopsis of the role of central neurotransmitters of PGO wave activity, Arch. Int. Pharmacodyn. Ther. 219: 326.

    PubMed  CAS  Google Scholar 

  • Rump, S., Rabsztyn, T., and Kopec, J., 1974, Effects of cholinesterase inhibition on the visual evoked potentials in the rabbit and their modification with various drugs, Act. Nerv. Super. (Praha) 16: 224.

    CAS  Google Scholar 

  • Sasaki, K., Kawaguchi, S., Matsuda, Y., and Mizuno, N., 1972a, Electrophysiological studies on cerebello-cerebral projections in the cat, Exp. Brain Res. 16: 15.

    Google Scholar 

  • Sasaki, K., Matsuda, Y., Kawaguchi, S., and Mizuno, N., 1972b, On the cerebello-thalamocerebral pathway for the parietal cortex, Exp. Brain Res. 16: 89.

    PubMed  CAS  Google Scholar 

  • Sasaki, K., Matsuda, Y., Oka, H., and Mizuno, N., 1975, Thalamo-cortical projections for recruiting responses and spindling-like responses in the parietal cortex, Exp. Brain Res. 22: 81.

    Google Scholar 

  • Sasaki, K., Shimono, T., Oka, H., Yamamoto, T., and Matsuda, Y., 1976, Effects of stimulation of the midbrain reticular formation upon thalamocortical neurones responsible for cortical recruiting responses, Exp. Brain Res. 26: 261.

    PubMed  CAS  Google Scholar 

  • Schlesinger, K., Boggan, W., and Freedman, D., 1965, Genetics of audiogenic seizures. I. Relation to brain serotonin and norepinephrine in mice, Life Sci. 4: 2345.

    PubMed  CAS  Google Scholar 

  • Schmidt, J., and Wolf, H., 1972, Influence of atropine and cholinesterase inhibitors on brain potentials caused by dental pulp stimulation, Acta Biol. Med. Ger. 29: 123.

    Google Scholar 

  • Schmitt, H., 1972, Actions centrales des substances parasympathomimetiques, in “Le Systeme Cholinergique” (G.G. Nahas, J.C. Salamagne, P. Viars, and G. Vourc’L, eds.), pp. 181–228, Librairie Arnette, Paris.

    Google Scholar 

  • Sellinger, O.Z., Azcurra, J.M., Ohlsson, W.G., Kohl, H.H., and Zand, R., 1972, Neurochemical correlates of drug-induced seizures: selective inhibition of cerebral protein synthesis by methionine sulfoximine, Fed. Proc. 31: 160.

    PubMed  CAS  Google Scholar 

  • Shute, C.C.D., 1975, Chemical transmitter systems in the brain, Mod. Trends Neurol 6: 183.

    CAS  Google Scholar 

  • Shute, C.C.D., and Lewis, P.R., 1975, Cholinergic pathways 1. Histochemical localization, Pharmacol Ther. 1: 19.

    Google Scholar 

  • Simke, J.P., and Saelens, JX., 1977, Evidence for a cholinergic fiber tract connecting the thalamus with the head of the striatum of the rat, Brain Res. 126(3): 481.

    Google Scholar 

  • Sitaram, N., Wyatt, R.J., Dawson, S., and Gillin, J.C., 1976, REM sleep induction by physostigmine infusion during sleep, Science 191: 1281.

    PubMed  CAS  Google Scholar 

  • Sjostrand, T., 1937, Potential changes in the cerebral cortex arising from cellular activity and the transmission of impulses in the white matter, J. Physiol (Lond.) 90: 41.

    Google Scholar 

  • Slater, P., 1968, The effects of triethylcholine and hemicholinium-3 on the acetylcholine content of rat Brain, Int. J. Neuropharmacol 7: 421.

    PubMed  CAS  Google Scholar 

  • Smialowski, A., 1977, Comparison of effects of the intrahippocampal 5-hydroxy- tryptamine and acetylcholine on EEG and behavior of rabbits, Act. Nerv. Super. (Praha) 19(2): 156.

    Google Scholar 

  • Sobotka, T.J., 1969, “Studies on Acetylcholine Levels in Mouse Brain” Doctoral thesis, Loyola University, Chicago.

    Google Scholar 

  • Stadnicki, S.W., and Schaeppi, U., 1972, Nicotine changes in EEG and behavior after intravenous infusion in awake unrestrained cats, Arch. Int. Pharmacodyn. Ther. 197: 72.

    PubMed  CAS  Google Scholar 

  • Starzl, T.E., Taylor, C.W., and Magoun, H.W., 1951, Ascending conduction in the reticular activating system with special reference to the diencephalon, J. Neurophysiol. 14: 461.

    PubMed  CAS  Google Scholar 

  • Steriade, M., and Hobson, J.A., 1976, A neuronal activity during the sleep-waking cycle, Prog. Neurobiol. 6: 155.

    PubMed  CAS  Google Scholar 

  • Sterman, M.B., and Clemente, C.B., 1962, ForeBrain inhibitory mechanisms. Sleep patterns induced by basal foreBrain stimulation in the behaving cat, Exp. Neurol 6: 103.

    PubMed  CAS  Google Scholar 

  • Sterman, M.B., and Wyrwicka, W., 1967, EEG correlates of sleep: evidence for separate forebrain substrates, Brain Res. 6: 143.

    PubMed  CAS  Google Scholar 

  • Stone, C.A., Meckelnberg, K.L., and Torchiana, M.A., 1958, Antagonism of nicotine- induced convulsions by ganglionic blocking agents, Arch. Int. Pharmacodyn. Ther. 117; 419.

    PubMed  CAS  Google Scholar 

  • Stumpf, C., and Gogolak, G., 1967, Actions of nicotine upon the limbic system, Ann. NY Acad. Sci. 142: 143.

    CAS  Google Scholar 

  • Sutherland, E.W., and Robinson, G.A., 1966, The role of cyclic 3’,5’-AMP in responses to catecholamines and other hormones, Pharmacol Rev. 18: 145.

    PubMed  CAS  Google Scholar 

  • Svenneby, G., and Roberts, E., 1974, Elevated acetylcholine contents in mouse brain after treatment with bicuculline and picrotoxin, J. Neurochem. 23: 215.

    Google Scholar 

  • Szerb, J.C., 1975, The release of acetylcholine from cerebral cortical slices in the presence or absence of an anticholinesterase, in “Cholinergic Mechanisms” (P.G. Waser, ed.), pp. 213–216, Raven Press, New York.

    Google Scholar 

  • Szerb, J.C., 1977, Characterization of presynaptic muscarinic receptors in central cholinergic neurons, in “Cholinergic Mechanisms and Psychopharmacology” (D.J. Jenden, ed.), pp. 49–60, Plenum Press, New York.

    Google Scholar 

  • Takahashi, R., Nasu, T., Tamura, T., and Kariya, T., 1961, Relationship of ammonia and acetylcholine levels to brain excitability, J. Neurochem. 7: 103.

    CAS  Google Scholar 

  • Tan, U., 1977, Electrocorticographic changes induced by topically applied succinylcholine and biperiden, Electroencephalogr. Clin. Neurophysiol 42: 252.

    PubMed  CAS  Google Scholar 

  • Teitelbaum, H., Lee, J.F., and Johannessen, J.N., 1975, Behaviorally evoked hippocampal theta waves: a cholinergic response, Science 188: 1114.

    PubMed  CAS  Google Scholar 

  • Tower, D.B., and McEachern, D., 1949, Acetylcholine and neuronal activity. II. Acetyl-choline and cholinesterase activity in the cerebrospinal fluids of patients with epilepsy, Can. J. Res. 27: 120.

    PubMed  CAS  Google Scholar 

  • Trabucchi, M., Cheney, D.L., Hanin, I., and Costa, E., 1975a, Application of principles of steady-state kinetics to the estimation of brain acetylcholine turnover rate: Effects of oxotremorine and physostigmine, J. Pharmacol Exp. Ther. 194: 51.

    Google Scholar 

  • Trabucchi, M., Cheney, D.L., Racagni, C., and Costa, E., 1975b, In vivo inhibition of striatal acetylcholine turnover by L-DOPA, apomorphine and (+)-amphetamine, brain Res. 85; 130.

    CAS  Google Scholar 

  • Tripod, J., 1957, Characterisation generale des effets pharmacodynamiques de substances psychotropiques, in “Psychotropic Drugs” (S. Garattini, and V. Ghetti, eds.), pp. 437–447, Elsevier, Amsterdam.

    Google Scholar 

  • Ulus, I.H., Wurtman, R.J., Scally, M.C., and Hirsch, M.J., 1977, Effect of choline on cholinergic function, in “Cholinergic Mechanisms and Psychopharmacology” (D.J. Jenden, ed.), pp. 525–538, Plenum Press, New York.

    Google Scholar 

  • Usdin, E., 1970, Reactions of cholinesterases with substrates, inhibitors and reactivators, in “Anticholinesterase Agents” (A.G. Karczmar, ed.), pp. 47–354, International Encyclopedia of Pharmacology & Therapeutics, Vol. 1, Section 13, Pergamon Press, Oxford.

    Google Scholar 

  • Van Meter, W.G., 1969, “Central Nervous System Responses to Anticholinesterase in Rabbits: Evidence for a Non-inhibitory Action and for an Adrenergic Link,” Ph.D. Thesis, Loyola University, Chicago.

    Google Scholar 

  • Van Meter, W.G., and Karczmar, A.G., 1971, An effect of physostigmine on the central nervous system of rabbits, related to brain levels of norepinephrine, Neuropharmacology 10: 319.

    Google Scholar 

  • Van Meter, W.G., Karczmar, A.G., and Fiscus, R.R., 1978, CNS effects of anticholin-esterases in the presence of inhibited cholinesterases, Arch. Int. Pharmacodyn. Ther. 23: 249.

    Google Scholar 

  • Vanderwolf, G.H., 1975, Neocortical and hippocampal activation in relation to behavior: Effects of atropine, phenothiazines and amphetamine, J. Comp. Physiol. Psychol. 88: 300.

    PubMed  CAS  Google Scholar 

  • Vas, C.J., Delgado, J.M.R., and Glasser, G., 1969, Effect of anticholinergic drugs on epileptic activity from amygdala and frontal cortex, Neurology 79: 234.

    Google Scholar 

  • Vazquez, A.J., and Krip, G., 1973, Evidence for an inhibitory role for acetylcholine, catecholamines, and serotonin on the cerebral cortex, in “Chemical Modulation of Brain Function” (H.C. Sabelli, ed.), Raven Press, New York.

    Google Scholar 

  • Velluti, R., and Hernandez-Peon, R., 1963, Atropine blockade within a cholinergic hyponogenic circuit, Exp. Neurol 8: 20.

    Google Scholar 

  • Vosu, H., and Wise, R.A., 1975, Cholinergic seizure kindling in the rat: Comparison of caudate, amygdala and hippocampus, Biol 13: 419.

    Google Scholar 

  • Votava, Z., 1967, Pharmacology of the central cholinergic synapses, Ann. Rev. Pharmacol 7: 223.

    PubMed  CAS  Google Scholar 

  • Ward, A.A., Jasper, H.J., and Pope, A., 1969, Clinical and experimental challenges of the epilepsies, in “Basic Mechanism of the Epilepsies” (H. J. Jasper, A.A. Ward, and A. Pope, eds.), pp. 1–12, Little Brown, Boston.

    Google Scholar 

  • Wescoe, W.C., Green, R.E., McNamara, B.P., and Krop, S., 1948, The influence of atropine and scopolamine on the central effects of DFP, J. Pharmacol. Exp. Ther. 92: 63.

    PubMed  CAS  Google Scholar 

  • Whishaw, I.Q., Robinson, T.E., and Schallert, T., 1976, Intraventricular anticholinergics do not block cholinergic hippocampal RSA or neocortical desynchronization in the rabbit or rat, Pharmacol Biochem. Behav. 5: 275.

    PubMed  CAS  Google Scholar 

  • Wilder, A., 1952, Pharmacologic dissociation of behavior and EEG sleep patterns in dogs: Morphine n-allyl normorphine and atropine, Proc. Soc. Exp. Biol Med. 79: 261.

    Google Scholar 

  • Williams, D., and Russell, W.R., 1941, Action of eserine and prostigmine on epileptic cerebral discharges, Lancet 1: 476.

    Google Scholar 

  • Wills, J.H., 1970, Toxicity of anticholinesterases and treatment of poisoning, in “Anti-cholinesterase Agents” (A.G. Karczmar, ed.), pp. 355–469, ¿ternati. Encyclop. Pharmacol. Therap, Vol. 1, Section 13, Pergamon Press, Oxford.

    Google Scholar 

  • Wolff, V.H., 1956, Die Behandlung Zerebraler Anfalle mit Scopolamine. Ein Betrag zur Klinik des “Synkopalin” Syndroms, Dtsch. Med. Wochenschr. 81: 1358.

    PubMed  CAS  Google Scholar 

  • Woody, C.D., Carpenter, D.O., Grieu, E., Knispel, J.D., Crow, T.J., and Black-Cleworth, P., 1974, Prolonged increases in resistance of neurons in cat motor cortex following extracellular iontophoretic application of acetylcholine (ACh) and intracellular current injection, Fed. Proc. 33: 399.

    Google Scholar 

  • Wurtman, R.J., Larin, F., Mostafapour, S., and Fernstrom, J.D., 1974, Brain catechol synthesis: Control by brain tyrosine concentration, Science 185: 183.

    PubMed  CAS  Google Scholar 

  • Wurtman, R.J., 1976, Control of neurotransmitter synthesis by precursor availability and food consumption, in “Subcellular Mechanisms in Reproductive Neuroendocrinology” ( F. Naftolin, ed.), pp. 149–166, Elsevier, Amsterdam.

    Google Scholar 

  • Yamaguchi, N., Marczynski, T.J., and Ling, G.M., 1963, The effects of electrical and chemical stimulation of the preoptic region and some nonspecific thalamic nuclei in unrestrained, waking animals, Electroencephalogr. Clin. Neurophysiol. 15: 154.

    Google Scholar 

  • Yamaguchi, N., Ling, G.M., and Marczynski, T.J., 1964, The effects of chemical stimulation of the preoptic region, nucleus centralis medialis or brain stem reticular formation with regard to sleep and wakefulness, Recent Adv. Biol Psychiatry 6: 9.

    Google Scholar 

  • Yamamoto, K.I., and Domino, E.F., 1967, Cholinergic agonist-antagonist interactions on neocortical and limbic EEG activation, Int. J. Neuropharmacol. 6: 357.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Plenum Press, New York

About this chapter

Cite this chapter

Karczmar, A.G. (1979). Brain Acetylcholine and Animal Electrophysiology. In: Davis, K.L., Berger, P.A. (eds) Brain Acetylcholine and Neuropsychiatric Disease. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2934-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2934-3_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-2936-7

  • Online ISBN: 978-1-4613-2934-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics