Advertisement

Collision-Induced Dissociation II: Trajectories and Models

  • P. J. Kuntz

Abstract

In this chapter we treat collision-induced dissociation (CID) within the framework of classical mechanics. Such an approach is of great practical use not only in the calculation of CID cross sections for their own sake, but also in the fields of hot-atom chemistry, high-energy molecular beam reactions, electron recombination and detachment, and charge transfer, where CID, although not the main process of interest, is present alongside other processes and must be properly taken into account. Indeed, CID cannot be treated independently of other product channels, since dissociation competes with these as soon as the collision energy increases beyond the dissociation threshold. A decent CID calculation must treat this competition adequately.

Keywords

Potential Energy Surface Entrance Channel Potential Energy Function Asymptotic Region Product Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.T.V. Kung and J.B. Anderson, Phase-space theory of atomic dissociation and recombination reactions, J. Chem. Phys. 60, 3731–3743 (1974).CrossRefGoogle Scholar
  2. 2.
    R.A. LaBudde, P.J. Kuntz, R.B. Bernstein, and R.D. Levine, Classical trajectory study of the K + CH3I reaction, J. Chem. Phys. 59, 6286–6298 (1973).CrossRefGoogle Scholar
  3. 3.
    T. Valencich and D.L. Bunker, Trajectory studies of hot atom reactions. II. An unrestricted potential for CH5, J. Chem. Phys. 61, 21–29 (1974).CrossRefGoogle Scholar
  4. 4.
    A.G. Clarke and G. Burns, Trajectory studies of atomic recombination reactions, J. Chem. Phys. 55, 4717–4730 (1971).CrossRefGoogle Scholar
  5. 5.
    A. Gelb, R. Kapral, and G. Burns, Nonequilibrium effects in atomic recombination reactions, J. Chem. Phys. 56, 4631–4635 (1972).CrossRefGoogle Scholar
  6. 6.
    A.G. Clarke and G. Burns, Trajectory studies of atomic recombination. II, J. Chem. Phys. 56, 4636–4645 (1972).CrossRefGoogle Scholar
  7. 7.
    A.G. Clarke and G. Burns, Trajectory studies of atomic recombination reactions. III, J. Chem. Phys. 58, 1908–1913 (1973).CrossRefGoogle Scholar
  8. 8.
    W.H. Wong and G. Burns, Trajectory studies of atomic recombination of I atoms. IV, J. Chem. Phys. 58, 4495–4467 (1973).Google Scholar
  9. 9.
    W.H. Wong and G. Burns, Trajectory studies of atomic recombination reactions. V, J. Chem. Phys. 59, 2974–2976 (1973).CrossRefGoogle Scholar
  10. 10.
    A. Jones and J.L.J. Rosenfeld, Monte Carlo simulation of H-atom recombination, in Abstracts of VII International Conference on the Physics of Electronic and Atomic Collisions, North Holland, Amsterdam (1971), p. 314.Google Scholar
  11. 11.
    M. Karplus, R.N. Porter, and R.D. Sharma, Energy dependence of cross sections for T + H2, T + D2 collisions, J. Chem. Phys. 45, 3871–3873 (1966).CrossRefGoogle Scholar
  12. 12.
    G.R. North and J.J. Leventhal, Classical superposition phenomena in H2+ (v = 0)-He reactive collisions, Chem. Phys. Lett. 23, 600–602 (1973).CrossRefGoogle Scholar
  13. 13.
    G.R. North, H.H. Harris, J.J. Leventhal, and P.B. James, Model for H2+ (v = 0)-He collisions above 2 eV, J. Chem. Phys. 61, 5060 H2+5065 (1974).Google Scholar
  14. 14.
    D.J. Malcolme-Lawes, Hydrogen isotopic exchange reactions at high energies, J. Chem. Soc. Faraday Trans. 2 71, 1183–1199 (1975).Google Scholar
  15. 15.
    J.T. Muckerman, Classical dynamics of hot atom reactions of F with HD, J. Chem. Phys. 57, 3388–3396 (1972).CrossRefGoogle Scholar
  16. 16.
    P.A. Whitlock, J.T. Muckerman, and R.E. Roberts, Classical mechanics of recombination H + H + M → H2 + M, J. Chem. Phys. 60, 3658–3673 (1974).CrossRefGoogle Scholar
  17. 17.
    R.K. Preston and J.S. Cohen, Chemi-ionization in atom-diatomic collisions, J. Chem. Phys. 65, 1589–1590 (1976).CrossRefGoogle Scholar
  18. 18.
    J.R. Krenos, R.K. Preston, R. Wolfgang, and J.C. Tully, Molecular beam and trajectory studies of H+ + H2, J. Chem. Phys. 60, 1634–1659 (1974).CrossRefGoogle Scholar
  19. 19.
    R.K. Preston and R.J. Cross, Jr., Charge exchange and chemical reaction: D2+ + H, J. Chem. Phys. 59, 3616–3622 (1973).CrossRefGoogle Scholar
  20. 20.
    R.E. Howard, R.E. Roberts, and M.J. Delle Donne, 3-body effects in exchange and dissociation encounters for Ar + Ar2, J. Chem. Phys. 65, 3067–3074 (1976).CrossRefGoogle Scholar
  21. 21.
    N.C. Blais and D.G. Truhlar, Trajectory study of Ar + H2 collisions. I, J. Chem. Phys. 65, 5335–5356 (1970).CrossRefGoogle Scholar
  22. 22.
    N.C. Blais and D.G. Truhlar, Monte Carlo trajectory study of Ar + H2 collisions. II, J. Chem. Phys. 66, 772–778 (1977).CrossRefGoogle Scholar
  23. 23.
    N.J. Brown and R.J. Munn, Molecular dynamics: The dissociation of H2 by He, J. Chem. Phys. 56, 1983–1987 (1972).CrossRefGoogle Scholar
  24. 24.
    A. Gelb, R. Kapral, and G. Burns, Dissociation of vibrationally-rotationally excited I2(B3IIOu+), J. Chem. Phys. 59, 2980–2985 (1973).Google Scholar
  25. 25.
    W.H. Wong and G. Burns, Dynamics of dissociation of diatomic molecules and mass effect, J. Chem. Phys. 62, 1712–1713 (1975).CrossRefGoogle Scholar
  26. 26.
    C. Evers, Trajectory surface hopping study of M + I2 collisions (M = Na, K, Cs), J. Chem. Phys. 21, 355–371 (1977).Google Scholar
  27. 27.
    B. Garetz, M. Rubinson, and J.I. Steinfeld, Classical trajectory surface hopping applied to CID, Chem. Phys. Lett. 28, 120–124 (1974).CrossRefGoogle Scholar
  28. 28.
    R.N. Porter and L.M. Raff, Classical trajectory methods in molecular collisions, in Dynamics of Molecular Collisions, Part B, W. H. Miller, editor, Plenum Press, New York (1976), Chap. 1.Google Scholar
  29. 29.
    R.N. Porter, Molecular trajectory calculations, Ann. Rev. Phys. Chem. 25, 317–355 (1974).CrossRefGoogle Scholar
  30. 30.
    A.F. Wagner and E.K. Parks, A classical statistical theory for chemical reactions, J. Chem. Phys. 64, 4343–4361 (1976).CrossRefGoogle Scholar
  31. 31.
    D.E. Stogryn and J.O. Hirschfelder, Contribution of bound, metastable, and free molecules to the second virial coefficient, J. Chem. Phys. 31, 1534–1545 (1959).Google Scholar
  32. 32.
    J.C. Tully, Nonadiabatic processes in molecular collisions, in Dynamics of Molecular Collisions, Part B, W.H. Miller, editor, Plenum Press, New York (1976), Chap. 5.Google Scholar
  33. 33.
    E.K. Parks, N.J. Hansen, and S. Wexler, Collision-induced ion pair formation of thallium halides, J. Chem. Phys. 58, 5489–5501 (1973).CrossRefGoogle Scholar
  34. 34.
    P.J. Kuntz and W.N. Whitton, Interpretation of CID charge-transfer processes in rare-gas molecule-ions, Chem. Phys. 16, 301–310 (1976).CrossRefGoogle Scholar
  35. 35.
    A. Henglein, Stripping effects in ion-molecule reactions, in Ion-Molecule Reactions in the Gas Phase, Vol. 58 of Advances in Chemistry Series, R.F. Gould, editor, American Chemical Society, Washington D.C. (1966), Chap. 5.Google Scholar
  36. 36.
    P.J. Kuntz, A direct interaction model for gas-phase chemical reactions, Trans. Faraday Soc. 66, 2980–2996 (1970).CrossRefGoogle Scholar
  37. 37.
    D.R. Bates, C.J. Cook, and F.J. Smith, Classical theory of ion-molecule rearrangement at high energies, Proc. Phys. Soc. 83, 49–57 (1964).CrossRefGoogle Scholar
  38. 38.
    B.H. Mahan, An analysis of direct ion-molecule reactions, in Interactions between Ions and Molecules, Pierre Ausloos, editor, Plenum Press, New York (1975), pp. 75–93.Google Scholar
  39. 39.
    B.H. Mahan, W.E.W. Ruska, and J.S. Winn, Sequential impulse model of direct reactions, J. Chem. Phys. 65, 3888–3896 (1976).CrossRefGoogle Scholar
  40. 40.
    D.J. Malcolme-Lawes, Computer simulation of reactions of hot hydrogen atoms, J. Chem. Phys. 57, 5522–5530 (1972).CrossRefGoogle Scholar
  41. 41.
    D J. Malcolme-Lawes, High energy reaction kinetics using a hard-sphere model, J. Chem. Soc. Faraday Trans. 2 68, 1613–1622 (1972).CrossRefGoogle Scholar
  42. 42.
    R.J. Suplinskas, Kinematic model for atom-diatom reactions, J. Chem. Phys. 49, 5046–5053 (1968).CrossRefGoogle Scholar
  43. 43.
    T.F. George and R.J. Suplinskas, Kinematic model for reaction. III. Ar+ + D2, J. Chem. Phys. 54, 1037–1045 (1971).CrossRefGoogle Scholar
  44. 44.
    G.M. Kendall, Chattering in hard sphere reactions, J. Chem. Phys. 58, 3523–3524 (1973).CrossRefGoogle Scholar
  45. 45.
    C. Rebick, R.D. Levine, and R.B. Bernstein, Energy requirements and energy disposal: Reaction probability matrices and a computational study of a model system, J. Chem. Phys. 60, 4977–4989 (1974).CrossRefGoogle Scholar
  46. 46.
    B.J. Alder and T.E. Wainwright, Studies in molecular dynamics. I. General method, J. Chem. Phys. 31, 459–466 (1959).CrossRefGoogle Scholar
  47. 47.
    J.C. Light, Phase-space theory of chemical kinetics, J. Chem. Phys. 40, 3221–3229 (1964).CrossRefGoogle Scholar
  48. 48.
    C. Rebick and R.D. Levine, Collision induced dissociation: A statistical theory, J. Chem. Phys. 58, 3942–3952 (1973).CrossRefGoogle Scholar
  49. 49.
    F.T. Smith, Generalized angular momentum in many-body collisions, Phys. Rev. 120, 1058–1069 (1960).CrossRefGoogle Scholar
  50. 50.
    R.D. Levine and R.B. Bernstein, Collision-induced dissociation: A simplistic optical model analysis, Chem. Phys. Lett. 11, 552–556 (1971).CrossRefGoogle Scholar
  51. 51.
    W.B. Maier II, Dissociative ionization of N2 and N2O by rare gas ion impact, J. Chem. Phys. 41, 2174–2181 (1964).CrossRefGoogle Scholar
  52. 52.
    E.K. Parks, A. Wagner, and S. Wexler, Collision-induced ion pair formation of thallium halides: Threshold behavior, J. Chem. Phys. 58, 5502–5513 (1976).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • P. J. Kuntz
    • 1
  1. 1.Hahn-Meitner-Institut für KernforschungBerlin 39West Germany

Personalised recommendations