Skip to main content

The Prospects of Excitonic Superconductivity

  • Chapter

Part of the book series: Physics of Solids and Liquids ((PSLI))

Abstract

The present era of intensive research in the field of one-dimensional conductors that started with the work of the Penn group(1) on TTF-TCNQ was preceded by the discussion of the possibility of superconductivity in one-dimensional organic materials which was suggested by one of us2 in 1964. This suggestion was based on a new mechanism of superconductivity, the so-called exciton mechanism. The term “exciton” applies here broadly to any electronic excitation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. B. Coleman, M. J. Cohen, D. J. Sandman, F. G. Yamagishi, A. F. Garito, and A. J. Heeger, Superconducting fluctuations and the Peierls instability in an organic solid, Solid State Commun. 12, 1125–1132 (1973).

    Article  ADS  Google Scholar 

  2. W. A. Little, Possibility of synthesizing an organic superconductor, Phys. Rev. 134, A1416–A1424 (1964).

    Article  ADS  Google Scholar 

  3. V. L. Ginzburg, Concerning surface superconductivity, Zh. Eksp. Teor. Fiz. 47, 2318– 2320 (1964) [Sov. Phys.-JETP 20, 1549–1550 (1965)1.

    Google Scholar 

  4. D. Allender, J. Bray, and J. Bardeen, Model for an exciton mechanism of superconductivity, Phys. Rev. B 7, 1020–1029 (1073).

    Article  Google Scholar 

  5. M. Strongin, A search for excitonic superconductivity, Solid State Commun. 14, 88 (1974).

    Google Scholar 

  6. Proceedings International Conference on Organic Superconductors, W. A. Little (ed.) J. Polymer. Sei. Pt. C, No. 29 (1970).

    Google Scholar 

  7. L. V. Keldysh, Superconductivity in nonmetallic systems, Usp. Fiz. Nauk 86, 327–333 (1965) [Sou. Phys. Usp. 8, 496–500 (1965)].

    Google Scholar 

  8. V. L. Ginzburg, The problem of high temperature superconductivity, Contemp. Phys. 9, 355–374 (1968).

    Article  ADS  Google Scholar 

  9. V. L. Ginzburg, The problem of high-temperature superconductivity. II, Usp. Fiz. Nauk 101, 185 (1970) [Sou. Phys. Usp. 13 (3), 335–352 (1970)].

    Google Scholar 

  10. V. L. Ginzburg, The problem of high-temperature superconductivity, Ann. Rev. Mater. Sei. 2, 663–696 (1972).

    Article  ADS  Google Scholar 

  11. V. L. Ginzburg and D. A. Kirzhnits, On the problem of high temperature superconductivity, Phys. Rep. Phys. Lett. C (Netherlands) 4, 343–356 (1972).

    Google Scholar 

  12. L. N. Bulaevsky, V. L. Ginzburg, D. I. Khomskii, D. A. Kirzhnits, Ju. V. Kopaev, E. G. Maximov, G. F. Zarkov, and G. P. Molulevitch, The problem of high temperature superconductivity, Parts I and II, Preprints N45 and N74, Lebedev Physical Institute, Moscow (1974).

    Google Scholar 

  13. J.J. Andre, A. Bieber, and F. Gautier, Physical properties of highly anisotropic systems: radical ion salts and charge transfer complexes, Ann. Phys. (Paris) 1, 145–256 (1976).

    Google Scholar 

  14. E. B. Yagubskii and M. L. Khidekel, High temperature exciton superconductivity: synthetic aspects, Russian Chem. Rev. 41, 1011–1026 (1972).

    Article  ADS  Google Scholar 

  15. I. F. Shchegolev, Electric and magnetic properties of linear conducting chains, Phys. Status Solidi (A) 12, 9–45 (1972).

    Article  ADS  Google Scholar 

  16. H. R. Zeller, Electronic properties of one-dimensional solid state systems, Adv. Solid State Phys. 13, 31–58 (1973).

    Article  Google Scholar 

  17. J. S. Miller and A. J. Epstein, One-dimensional inorganic complexes, in Progress in Inorganic Chemistry, Vol. 20, pp. 1–151, Stephen J. Lippard (ed.), John Wiley & Sons, New York (1976).

    Chapter  Google Scholar 

  18. H. J. Keller, Low-Dimensional Cooperative Phenomena, NATO-ASI Series B7, Plenum Press, New York (1975).

    Google Scholar 

  19. H. J. Keller, Chemistry and Physics of One-Dimensional Metals, NATO-ASI Series B25, Plenum Press, New York (1977).

    Google Scholar 

  20. B. W. Roberts, Superconductivity, in Handbook of Chemistry and Physics, 48th Ed., pp. E75–E90, R. C. Weast and S. M. Selby (eds.), The Chemical Rubber Co., Cleveland, Ohio (1967).

    Google Scholar 

  21. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Theory of superconductivity, Phys. Rev. 108, 1175–1204 (1957).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. S. V. Tiablikov and V. V. Tomachev, The interaction of electrons with lattice vibrations, Zh. Eksp. Teor. Fiz. 34, 1254–1257 [Sov. Phys. JETP 34, 867–869 (1958)].

    Google Scholar 

  23. L. R. Testardi Structural instabilities in A-15 compounds, Rev. Mod. Phys. 47, 637–648 (1975).

    Article  ADS  Google Scholar 

  24. J. R. Gavaler, Superconductivity in Nb-Ge films above 22K, Appi. Phys. Lett. 23, 480–482 (1973).

    Article  ADS  Google Scholar 

  25. W. L. McMillan, Transition temperature of strong-coupled superconductors, Phys. Rev. 167, 331 344 (1968).

    ADS  Google Scholar 

  26. P. Morel and P W. Anderson, Calculation of the superconducting state parameters with retarded electron-phonon interaction, Phys. Rev. 125, 1263–1271 (1962).

    Article  ADS  Google Scholar 

  27. G. Rickayzen, in Superconductivity, Vol. 1, pp. 72–115, R. D. Parks (ed.), Marcel Dekker, New York (1969).

    Google Scholar 

  28. W. A. Little, J Polymer Sci. Pt. C 29, 17–26 (1970).

    Google Scholar 

  29. B. T. Geilikman, A possible mechanism for superconductivity in alloys, Zh. Eksp. Teor. Fiz. 48, 1194–1 197 (1965) [Sov. Phys.-JETP 21, 796–798 (1965)].

    Google Scholar 

  30. M. L. Cohen and P. W. Anderson, in Superconductivity in d- and f-Band Metals, D. H. Douglass (ed.), AIP, New York (1972).

    Google Scholar 

  31. J. C. Phillips, Superconductivity mechanisms and covalent instabilities, Phys. Rev. Lett. 29, 1551–1554 (1972).

    Article  ADS  Google Scholar 

  32. D. Pines and P Nozieres, Theory of Quantum Liquids, W. A. Benjamin, New York (1966).

    Google Scholar 

  33. D. Davis, H. Gutfreund, and W. A. Little, Proposed model of a high temperature excitonic superconductor, Phys. Rev. B 13, 4766–4779 (1976).

    Article  ADS  Google Scholar 

  34. J. R. Schrieffer, Theory of Superconductivity, W. A. Benjamin, New York (1964).

    MATH  Google Scholar 

  35. S. Engelsberg and J. R. Schrieffer, Coupled electron-phonon system, Phys. Rev. 131, 993–1008 (1963).

    Article  ADS  Google Scholar 

  36. D. A. Kirzhnits, E. G. Maximov, and D. I. Khomskii, The description of superconductivity in terms of dielectric response function, J. Low Temp. Phys. 10, 79–93 (1973).

    Article  ADS  Google Scholar 

  37. D. B. Chesnut, Exciton renormalization in conducting molecular solids, Mol. Cryst, 1, 351–375 (1966).

    Article  Google Scholar 

  38. P. M. Chaikin, A. F. Garito, and A. J. Heeger, Excitonic polarons in molecular crystals, Phys. Rev. B 5, 4966–4969 (1972).

    Article  ADS  Google Scholar 

  39. R. A. Bari, Excitonic polarons in molecular solids, Phys. Rev. Lett. 30, 790–794 (1973).

    Article  ADS  Google Scholar 

  40. Yu. M. Balkarei and D. I. Khomskii, Lattice stability in the phononless mechanism of superconductivity, JETP Lett. 3, 181–183 (1966).

    ADS  Google Scholar 

  41. J. P. Hurault, Superconductivity in small crystallites, J. Phys. Chem. Solids 29, 1765– 1772 (1968).

    Article  Google Scholar 

  42. V. L. Ginzburg, Manifestation of the exciton mechanism in the case of granulated superconductors, JETP Lett. 14, 396–399 (1971).

    MathSciNet  ADS  Google Scholar 

  43. P. W. Anderson, Editorial comment, Physics 2, 151 (1966).

    Google Scholar 

  44. G. Bergmann and D. Rainer, The sensitivity of the transition temperature to changes in α2F(ω), Z. Phys. 263. 59–68 (1973).

    Article  ADS  Google Scholar 

  45. J. Appel, Role of thermal phonons in high temperature superconductivity, Phys. Rev. Lett. 21, 1164–1167 (1968).

    Article  ADS  Google Scholar 

  46. P. W. Anderson, Theory of dirty superconductors, J. Phys. Chem. Solids 11, 26–30 (1959).

    Article  ADS  Google Scholar 

  47. K. Maki, Gapless superconductivity, in Superconductivity, Vol. 2, pp. 1035–1105, R. D. Parks (ed.), Marcel Dekker, New York (1969).

    Google Scholar 

  48. P. B. Allen, Repulsive effect of low frequency phonons on superconductivity, Solid State Commun. 12, 379–383 (1973).

    Article  ADS  Google Scholar 

  49. A. E. Karakozov, E. G. Maksimov, and S. A. Mashkov, Effects of the frequency dependence of the electron-phonon interaction spectral function on the thermodynamic properties of superconductors, Sov. Phys.-JETP 41, 971–976 (1976).

    ADS  Google Scholar 

  50. J. R. Schrieffer, D. J. Scalapino, and J. W. Wilkins, Effective tunneling density of states in superconductors, Phys. Rev. Lett. 10, 336–339 (1963).

    Article  ADS  Google Scholar 

  51. H. A. Kramers and G. H. Wannier, Statistics of the two-dimensional ferromagnet. Part I, Phys. Rev. 60, 252–276 (1941).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. L. D. Landau and E. M. Lifshitz, Statistical Physics, Pergamon Press, London (1959).

    Google Scholar 

  53. L. Van Hove, Sur l’intégrale de configuration pour les systèmes de particles a une dimension, Physica 16, 137–143 (1950).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  54. R. A. Ferrell, Possibility of one-dimensional superconductivity, Phys. Rev. Lett. 13, 330–335, (2964).

    Article  ADS  Google Scholar 

  55. T. M. Rice,Superconductivity in one and two dimensions, Phys. Rev. 140, A889–A1891 (1965).

    Article  MathSciNet  Google Scholar 

  56. P. C. Hohenberg, Existence of long range order in one and two dimensions, Phys. Rev. 158, 383–386 (1967).

    Article  ADS  Google Scholar 

  57. M. Weger and I. B. Goldberg, Some lattice and electronic properties of the β3-tungstens, in Solid State Physics, Vol. 28, pp. 1–178, F. Seitz et al. (eds.), Academic Press, New York (1973).

    Google Scholar 

  58. B. T. Matthias, Higher temperatures and instabilities, in Superconductivity in d- and f-Band Metals, pp. 367–375, D. H. Douglass (ed.), AIP, New York (1972).

    Google Scholar 

  59. C. G. Kuper, Little’s proposal for a superconducting organic polymer, Phys. Rev. 150, 189–192 (1966).

    Article  ADS  Google Scholar 

  60. R. E. DeWames, G. W. Lehman, and T. Wolfram, Superconductivity in macroscopic one dimensional systems, Phys. Rev. Lett. 13, 749–750 (1964).

    Article  ADS  Google Scholar 

  61. W. A. Little, Decay of persistent currents in small superconductors, Phys. Rev. 156, 396–403 (1967).

    Article  ADS  Google Scholar 

  62. M. Tinkham, The electromagnetic properties of superconductors, Rev. Mod. Phys. 46, 587–596 (1974).

    Article  ADS  Google Scholar 

  63. K. Huang, Statistical Mechanics, p. 203, John Wiley and Sons, New York (1963).

    Google Scholar 

  64. J. S. Langer and V. Ambegaokar, Intrinsic resistive transition in narrow superconducting channels, Phys. Rev. 164, 498–510 (1967).

    Article  ADS  Google Scholar 

  65. D. E. McCumber and B. I. Halperin, Time scale of intrinsic resistive fluctuations in thin superconducting wires, Phys. Rev. B 1, 1054–1070 (1970).

    Article  ADS  Google Scholar 

  66. R. S. Newbower, M. R. Beasley, and M. Tinkham, Fluctuation effects on the superconducting transition of tin whisker crystals, Phys. Rev. B 5, 864–868 (1972).

    Article  ADS  Google Scholar 

  67. V. Emery, Basic aspects in the physics of one dimensional metals, in Chemistry and Physics of One-Dimensional Metals, H. J. Keller (ed.), NATO-ASI Series B25, Plenum Press, New York (1977).

    Google Scholar 

  68. B. Horovitz, Instabilities of electron systems with nesting fermi surfaces, Solid State Commun. 18, 445–448 (1976).

    Article  ADS  Google Scholar 

  69. J. Solyom, Application of the renormalization group technique to the problem of phase transition in one-dimensional metallic systems. II. response functions and the ground- state problem, J. Low Temp. Phys. 12, 547–558 (1973).

    Article  ADS  Google Scholar 

  70. H. Fukuyama, T. M. Rice, C. M. Varma, and B. I. Halperin, some properties of the one-dimensional Fermi model, Phys. Rev. B 10, 3775–3780 (1974).

    Article  ADS  Google Scholar 

  71. Yu. A. Bychkov, L. P. Gorkov, and I. E. Dzyaloshinskii, Possibility of superconductivity type phenomena in a one-dimensional system, Sov. Phys. JETP 23, 489–501 (1966).

    ADS  Google Scholar 

  72. K. Levin, D. L Mills, and S. L. Cunningham, Incompatibility of BCS pairing and the peierls distortion in one-dimensional systems. I. mean field theory, Phys. Rev. B 10, 3821–3831 (1974).

    Article  ADS  Google Scholar 

  73. K. Levin, S. L. Cunningham, and D. L. Mills, Incompatibility of BCS pairing and the Peierls distortion in one-dimensional systems. II. fluctuation effects, Phys. Rev. B 10, 3832–3843 (1974).

    Article  ADS  Google Scholar 

  74. N. Menyhard and J. Solyom, Application of the renormalization group technique to the problem of phase transition in one-dimensional metallic system. I. invariant couplings, vertex and one-particle Green’s function, J. Low Temp. Phys. 12, 529–545 (1973).

    Article  ADS  Google Scholar 

  75. A. Luther and V. J. Emery, Backward scattering in the one-dimensional electron gas, Phys. Rev. Lett. 33, 589–592 (1974).

    Article  ADS  Google Scholar 

  76. P. A. Lee, Comments on a solution of a one-dimensional Fermi-gas model, Phys. Rev. Lett. 34, 1247 –1250(1975).

    Article  ADS  Google Scholar 

  77. H. Gutfreund and R. A. Klemm, Order in metallic chains. I. the single chain, Phys. Rev. B 14, 1073–1085 (1976).

    Article  ADS  Google Scholar 

  78. S. T. Chui, T. M. Rice, and C. M. Varma, Coulomb effects on the Peierls transition, Solid State Commun. 15, 155–1559 (1974).

    Article  ADS  Google Scholar 

  79. G. S. Grest, E Abrahams, S. T. Chui, P. A. Lee, and A. Zawadowski, Two-cutoff scaling for the one-dimensional electron gas, Phys. Rev. B 14, 1225–1232 (1976).

    Article  ADS  Google Scholar 

  80. D. J. Scalapino, Y. Imry; and P. Pincus, Generalized Ginzburg-Landau theory of pseudo-one-dimensional systems, Phys. Rev. B 11, 2042–2048 (1975).

    Article  ADS  Google Scholar 

  81. R. A. Klemm and H. Gutfreund, Order in metallic chains. II. coupled chain, Phys. Rev. B 14, 1086–1102 (1976).

    Article  ADS  Google Scholar 

  82. L. Mihaly and J. Solyom, Renormalization group treatment of three-dimensional ordering in a system of weakly coupled linear chains, J. Low Temp. Phys. 24, 579–596 (1976).

    Article  ADS  Google Scholar 

  83. N. Menyhard, The effects of ID correlations on the phase transition in quasi-ID metallic systems, Solid State Commun. 21, 495–498 (1977).

    Article  ADS  Google Scholar 

  84. T. Maniv and M. Weger, The superconducting transition in coupled linear chain systems, J. Phys. Chem. Solids 36, 367–376 (1975).

    Article  ADS  Google Scholar 

  85. B. Horovitz, H. Gutfreund, and M. Weger, Interchain coupling and the Peierls transition in linear-chain systems, Phys. Rev. B 12, 3174–3185 (1975).

    Article  ADS  Google Scholar 

  86. D. Jerome and M. Weger, Electronic properties of organic conductors: pressure effects, in Chemistry and Physics of One Dimensional Metals, H. J. Keller (ed.), NATO-ASI Series B25, Plenum Press, New York (1977).

    Google Scholar 

  87. S. Barisic and K Saub, Selfconsistent calculation of the Peierls instability in quasi-one- dimensional conductors, J. Phys. C 6, L367–370 (1973).

    Article  ADS  Google Scholar 

  88. W. Dietrich, Fluctuations and three-dimensional ordering in weakly coupled linear conductors, Z. Phys. 270, 239–243 (1974).

    Article  ADS  Google Scholar 

  89. B. Horovitz and A. Birnboim, Superconductivity and Peierls instability in coupled linear chain systems, Solid State Commun. 19, 91–95 (1976).

    Article  ADS  Google Scholar 

  90. B. Horovitz, Solid State Commun. 18, 445–448 (1976).

    Article  ADS  Google Scholar 

  91. N. F. Mott and W. D. Twose, The theory of impurity conduction, Adv. Phys. 10, 107–163 (1961).

    Article  ADS  Google Scholar 

  92. W. A. Little and H. Gutfreund (to be published).

    Google Scholar 

  93. R. E. Borland, Existence of energy gaps in one-dimensional liquids, Proc. Phys. Soc. 78, 926–931 (1961).

    Article  MathSciNet  ADS  Google Scholar 

  94. D. J. Thouless, A relation between the density of states and the range of localization for one-dimensional random systems, J. Phys. C 5, 77–81 (1972).

    Article  ADS  Google Scholar 

  95. D. J. Thouless, Electrons in disordered systems and theory of localization, Phys. Rep. 13, 93–142 (1974).

    Article  ADS  Google Scholar 

  96. Yu. A. Bychkov, Frequency dependence of the conductivity of one-dimensional systems, Sou. Phys.-JETP 38, 209-213 (1974) [Zh. Eksp. Teor. Fiz. 65, 427–438(1973)].

    ADS  Google Scholar 

  97. V. L. Berezinsky, Kinetics of a quantum particle in a one-dimensional random potential, Sov. Phys.-JETP 38, 620–627 (1974) [Zh. Eksp. Teor. Fiz. 65, 1251–1266 (1973)].

    ADS  Google Scholar 

  98. A. A. Gogolin, V. I. Melnikov, and E. I. Rashba, Conductivity in disordered chain caused by electron-phonon interaction, Sov. Phys.-JETP 42, 168–178 (1975) [Zh. Eksp. Teor. Fiz. 327–349 (1975)].

    ADS  Google Scholar 

  99. A. Zavadovskii, Effect of impurities on superconductivity-like phenomena in one- dimensional systems, Sov. Phys. JETP 27, 767–771 (1968).

    ADS  Google Scholar 

  100. B. R. Patton and L. J. Sham, Conductivity, superconductivity, and the Peierls instability, Phys. Rev. Lett. 31, 631–634 (1973).

    Article  ADS  Google Scholar 

  101. A. I. Larkin and V. I. Mel’nikov, Effect of impurities on the phase transitions in the quasi-one-dimensional conductors, Zh. Eksp. Teor. Fiz. 71, 2199–2203 (1976) [Sor. Phys.-JETP 44, 1159–1161 (1976)].

    Google Scholar 

  102. I. F. Foulkes and B. L. Gyorffy, p-wave pairing in metals, Phys. Rev. B 15, 1395–1398 (1976).

    Article  ADS  Google Scholar 

  103. I. E. Dzyaloshinskii and E. I. Kats, Superconductivity in quasi-one-dimensional (threadlike) structures, Sov. Phys.-JETP 28, 178–182 (1969).

    ADS  Google Scholar 

  104. D. Davis, Thomas-Fermi screening in one dimension, Phys. Rev. B 7, 129–135 (1973).

    Article  ADS  Google Scholar 

  105. B. Bush, Theory of the screened coulomb interaction in quasi-one-dimensional metals, Ph.D. Thesis, Stanford University (1974).

    Google Scholar 

  106. A. S. Berenblyum, L. I. Buravov, M. L. Khidekel, I. F. Shchegolev, and E. B. Yakimov, Zh. Eksp. Teor. Fiz. Pis’ma Red. 13, 619–622 (1972) [Sov. Phys. JETP Lett. 13, 440–442 (1973)].

    ADS  Google Scholar 

  107. F. Stern, Polarizability of a two-dimensional electron gas, Phys. Rev. Lett. 18, 546–548 (1967).

    Article  ADS  Google Scholar 

  108. T. R. Brown and C. C. Grimes, Observation of cyclotron resonance in surface-bound electrons on liquid helium, Phys. Rev. Lett. 29, 1233–1236 (1972).

    Article  ADS  Google Scholar 

  109. P. B. Visscher and L. M. Falicov, Dielectric screening in a layered electron gas, Phys. Rev. B 3, 2541–2547 (1971).

    Article  ADS  Google Scholar 

  110. A. L. Fetter, Electrodynamics of a layered electron gas. I. single layer, Ann. Phys. (N.Y.) 81, 367–393 (1973).

    Article  ADS  Google Scholar 

  111. A. L. Fetter, Electrodynamics of a layered electron gas. II. periodic array, Ann. Phys. (N.Y.) 88, 1–25 (1974).

    Article  ADS  Google Scholar 

  112. L. N. Bulaevskii and Yu. A. Kukharenko, Effectiveness of the exciton mechanism of superconductivity in layered compounds with molecules, Sov. Phys. JETP 33, 821–824 (1971).

    ADS  Google Scholar 

  113. W. A. Little, The effectiveness of the exciton mechanism in superconducting layered compounds, J. Low Temp. Phys. 13, 365–369 (1973).

    Article  MathSciNet  ADS  Google Scholar 

  114. L. Salem, The Molecular Orbital Theory of Conjugated Systems, W. A. Benjamin Inc., New York (1966).

    Google Scholar 

  115. H. Gutfreund and W. A. Little, Correlation effects of u electrons. II. Low lying excitations of polycyclic hydrocarbons, J. Chem. Phys. 50, 4468–4477 (1969).

    Article  ADS  Google Scholar 

  116. W. A. Little and H. Gutfreund, Dynamic effective electron-electron interaction in the vicinity of a polarizable molecule, Phys. Rev. B 4, 817–823 (1971).

    Article  ADS  Google Scholar 

  117. K. Nishimoto and N. Mataga, Electronic structure and spectra of nitrogen heterocyoles, Z. Phys. Chem. 13, 140–157 (1957).

    Google Scholar 

  118. A. M. Abarbanel, An energy band calculation of linear chain transition metal complexes, Ann. Phys. (N.Y. 91, 356–365 (1975).

    Article  ADS  Google Scholar 

  119. D. M. Whitmore, A one-dimensional band calculation of a linear, square planar platinum complex, Phys. Rev. Lett. 50A, 55–56 (1974).

    Google Scholar 

  120. R. P. Messmer (private communication).

    Google Scholar 

  121. R. P. Messmer and D. R. Salahub, Importance of chemical effects in determining the free-electron-like band structure of K2Pt(CN)4Br0.3 .3H20, Phys. Rev. Lett. 35, 533– 536 (1975).

    Article  ADS  Google Scholar 

  122. K. Mees, The Theory of the Photographic Process, The MacMillan Company, New York (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Plenum Press, New York

About this chapter

Cite this chapter

Gutfreund, H., Little, W.A. (1979). The Prospects of Excitonic Superconductivity. In: Devreese, J.T., Evrard, R.P., van Doren, V.E. (eds) Highly Conducting One-Dimensional Solids. Physics of Solids and Liquids. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2895-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2895-7_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-2897-1

  • Online ISBN: 978-1-4613-2895-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics