Advertisement

Superconductivity and Quantum Optics

  • A. DiRienzo
  • D. Rogovin
  • M. Scully
  • R. Bonifacio
  • L. Lugiato
  • M. Milani
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 37)

Abstract

In these lectures we will be describing the applications of quantum optical techniques to superconducting tunnel junctions. This work has been motivated, in part, by the close analogy between the quantum mechanics of BCS electron pairs in a superconducting tunnel junction and the quantum mechanics of two-level systems.1 Since two-level systems are a mainstay of quantum optics, it is natural that we begin considering problems such as coherent transients in superconducting junctions (a classic two-level system) from a quantum optical point of view. Two such problems, supperradiance and Rabi flopping effects in Josephson devices will be discussed. Some of the coherent transient effects we will see are different from those observed in the normal two-level atom problem, but there are also many similarities.

Keywords

Josephson Junction Tunnel Junction Coherent Superposition Josephson Effect Charge Imbalance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Rogovin and M. Scully, Phys. Rept., 25C, 175 (1976).CrossRefADSGoogle Scholar
  2. 2.
    M. Sargent, M. Scully, and W. Lamb, Laser Physics, Addison-Wesley, 1974; H. Haken, “LaserTheory”, Encyclopedia of Physics, Vol.XXV/Zc, ed. by S. Flügge, Springer-Verlag, Berlin (1970); M. Lax, Brandeis University Summer Institute in Theoretical Physics, (1966).Google Scholar
  3. 3.
    L. N. Cooper, Phys. Rev., 104, 1189 (1956).CrossRefADSMATHGoogle Scholar
  4. 4.
    J. Bardeen, L. Cooper, and J. Schrieffer, Phys. Rev., 108, 1175 (1957).CrossRefADSMathSciNetMATHGoogle Scholar
  5. 5.
    P. Anderson, Phys. Rev., 112, 1900 (1958).CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    \(\vec k > 0\) means the sum is to include only those \(\vec k\)’s with kzgt;0.Google Scholar
  7. 7.
    With this representation we can do simple quantum mechanics of a superconductor. Everything we will deal with is at T = 0°. But to understand the physics of the Josephson problem, the (zero temperature) spinor representation is all we need.Google Scholar
  8. 8.
    We can see this by writing \(H = \sum\limits_{\vec k} {\left[ {{{\bar \varepsilon }_{\vec k}}\hat Z + \sum\limits_{\vec k} {V{\sigma _{{{\vec k}^\prime }x}}} \hat X} \right]} \cdot{\vec \sigma _{\vec k}}\) and noting that whereas the expectation value of the kinetic energy for the \(\vec k\)-th pair is \({\bar \varepsilon _{\vec k}}\) the expectation value of its potential energy is \( < V\sum\limits_{\vec k} {{\sigma _{k'x}} > \simeq Vm} \) (m is defined in Fig. 6).Google Scholar
  9. 9.
    R. Dicke, Phys. Rev., 93, 99 (1954).CrossRefADSMATHGoogle Scholar
  10. 10.
    A. DiRienzo, D. Rogovin, and M.O. Scully, Proc. of Fourth Rochester Conference on Coherence and Quantum Optics, Rochester, New York, June 1977.Google Scholar
  11. 11.
    R. Glauber, Phys. Rev., 130, 2529 (1963); Phys. Rev., 131, 2766 (1963).CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    P. Lee and M. Scully, Phys. Rev., B3, 769 (1971).ADSGoogle Scholar
  13. 13.
    P. Wallace and M. Stavn, Can. J. Phys., 43, 411 (1965).CrossRefADSMATHGoogle Scholar
  14. 14.
    B. Josephson, Phys. Letters, 1, 251 (1962).CrossRefADSMATHGoogle Scholar
  15. 15.
    R. Bonifacio, D. Rogovin, and M. Scully, Opt. Comm., 21, 293, (1977).CrossRefADSGoogle Scholar
  16. 16.
    W. A. Harrison, Solid State Theory, McGraw-Hill, New York (1977).Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • A. DiRienzo
    • 1
    • 2
  • D. Rogovin
    • 1
    • 2
  • M. Scully
    • 1
    • 2
  • R. Bonifacio
    • 3
  • L. Lugiato
    • 3
  • M. Milani
    • 3
  1. 1.Optical Sciences CenterUniversity of ArizonaTucsonUSA
  2. 2.Science Applications, Inc.La JollaUSA
  3. 3.Istituto di FisicaUniversitá di MilanoMilanItaly

Personalised recommendations