Computer Simulation of Collective Modes and Transport Coefficients of Strongly Coupled Plasmas

  • Jean-Pierre Hansen
Part of the NATO Advanced Study Institutes Series book series (volume 36)


Consider a periodic system of N point ions of charge Ze and mass M in a rigid, neutralizing uniform background. For a given configuration \(\mathop r\limits^{ \to N} = \left( {{{\mathop r\limits^ \to }_1},\mathop {{r_2}}\limits^ \to ...,{{\mathop r\limits^ \to }_{\rm N}}} \right)\) of the ions, the total potential energy of the system is:
$${V_N} = \frac{1}{{2v}}{\sum\limits_{k \ne \circ } {\frac{{4\pi \left( {Ze} \right)}}{{{k^2}}}} ^2}\left( {\rho _k^ \to \rho _{ - k}^ \to - {\rm N}} \right)$$
$$\rho _k^ \to = \sum\limits_{i = 1}^N {_ei\mathop k\limits^ \to }.{\mathop r\limits^ \to _i}$$
Excess thermodynamic properties, and more generally, all reduced(dimensionless) equilibrium properties depend on the single dimensionless variable:
$$\Gamma = {\frac{{\left( {Ze} \right)}}{{a{k_B}T}}^2}$$
where a = (3/4πρ)1/3, ρ = N/V. We shall frequently use reduced distance x = r/a and wave numbers q = k/a. To describe dynamical (or time-dependent) properties we introduce an additional time variable t which we express in a “natural” unit, equal to the inverse of the plasma frequency:
$${\omega _p} = {\sqrt {\frac{{4\pi \left( {Ze} \right)}}{M}} ^2}$$


Monte Carlo Collective Mode Plasmon Mode Pair Distribution Function Strong Coupling Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alder, B. J. and T. E. Wainwright, 1959, J. Chem. Phys. 31, 459.MathSciNetADSCrossRefGoogle Scholar
  2. Balescu, R., 1975, Equilibrium and Non-Equilibrium Statistical Mechanics, Wiley, New York.Google Scholar
  3. Baus, M., 1975, Physica 79A, 377.CrossRefGoogle Scholar
  4. Baus, M., 1977, Phys. Rev. A15, 790.ADSCrossRefGoogle Scholar
  5. Bernu, B., 1977, P. Vieillefosse and J. P. Hansen, 1977, submitted to Phys. Letters A.Google Scholar
  6. Brush, S. G., H. L. Sahlin and E. Teller, 1966, J. Chem. Phys. 45, 2102.ADSCrossRefGoogle Scholar
  7. DeWitt, H. E., 1976, Phys. Rev. A14, 1290.ADSCrossRefGoogle Scholar
  8. DeWitt, H. E. and W. B. Hubbard, 1976, Astrophys. J. 205, 295.ADSCrossRefGoogle Scholar
  9. Galam, S. and J. P. Hansen, 1976, Phys. Rev. A14, 816.ADSCrossRefGoogle Scholar
  10. Gaskell, T. and O. Chiakvelu, 1977, J. Phys. C10, 2021.ADSGoogle Scholar
  11. Gould, H. and G. F. Mazenko, 1977, Phys. Rev. A15, 1274.ADSCrossRefGoogle Scholar
  12. Hansen, J. P., 1973, Phys. Rev. A8, 3096.ADSCrossRefGoogle Scholar
  13. Hansen, J. P. and I. R. McDonald, 1976, Theory of Simple Liquids, Academic Press, London.Google Scholar
  14. Hansen, J. P., I. R. McDonald and E. L. Pollock, 1975, Phys. Rev. A11, 1025.ADSCrossRefGoogle Scholar
  15. Hansen, J. P., E. L. Pollock and I. R. McDonald, 1974, Phys. Rev. Lett. 32, 277.ADSCrossRefGoogle Scholar
  16. Hansen, J. P., E. L. Pollock and I. R. McDonald, 1974, Phys. Rev. Lett. 32, 277.ADSCrossRefGoogle Scholar
  17. Hansen, J. P.,and P. Vieillefosse, 1975, Phys. Lett. 53A, 187.CrossRefGoogle Scholar
  18. Hansen, J. P. P. Vieillefosse, 1976, Phys. Rev. Lett. 37, 391.ADSCrossRefGoogle Scholar
  19. Kadanoff, L. P. P. C. Martin, 1963, Ann. Phys. ( New York ), 24, 419.MathSciNetADSMATHCrossRefGoogle Scholar
  20. Lieb, E. L. and H. Narnhofer, 1975, J. Stat. Phys. 12, 291.MathSciNetADSMATHCrossRefGoogle Scholar
  21. McDonald, I. R., P. Vieillefosse and J. P. Hansen, 1977, Phys. Rev. Lett. 39, 271.ADSCrossRefGoogle Scholar
  22. Minoo, H., C. Deutsch and J. P. Hansen, 1976, Phys. Rev. A14, 840.ADSCrossRefGoogle Scholar
  23. Pollock, E. L. J. P. Hansen, 1973, Phys. Rev. A8, 3110.ADSCrossRefGoogle Scholar
  24. Rahman, A., 1964, Phys. Rev. 136, A405.ADSCrossRefGoogle Scholar
  25. Sjödin, S. and S. K. Mitra, 1977, preprint.Google Scholar
  26. Varley, R. L., 1977, preprint.Google Scholar
  27. Verlet, L., 1967, Phys. Rev. 159, 98.ADSCrossRefGoogle Scholar
  28. Vieillefosse, P. and J. P. Hansen, 1975, Phys. Rev. A12, 1106.ADSCrossRefGoogle Scholar
  29. Vieillefosse, P., 1975, thèse de 3ème cycle, Paris.Google Scholar
  30. Wallenborn, J. and M. Baus, 1977, preprint.Google Scholar
  31. Ziman, J. M., 1961, Philos. Mag. 6, 1013.ADSMATHCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Jean-Pierre Hansen
    • 1
  1. 1.Laboratoire de Physique Théorique des LiquidsUniversité Paris VIParis Cedex 05France

Personalised recommendations