Sintering’85 pp 133-141 | Cite as

Dislocation-Activated Sintering Processes

  • W. Schatt
  • E. Friedrich


On sphere-plate models made from copper it is shown that during sintering the dislocation density increases considerably in the contact region. Its distribution and time-dependent alteration are able to be analysed by means of the Kessel-technique and described quantitatively. The same effect is observed during sintering compacts of electrolytic copper powder. The results of positron annihilation spectroscopy show the high dislocation densities generated in the heating phase to be reduced by non-conservative dislocation movement in the stage of intensive shrinkage. Resulting densification mechanisms are discussed.


Dislocation Density Contact Zone Material Transport Shrinkage Rate Positron Annihilation Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. V. Lenel, Powder Metallurgy, Principles and Applications, Metal Powder Industries Federation, Princeton, New Jersey (1980) 251–257.Google Scholar
  2. 2.
    B. H. Alexander and R. W. Baluffi, Acta Met. 5 (1957) 666.CrossRefGoogle Scholar
  3. 3.
    J. E. Geguzin and J. I. Klincuk, Poroskov. Metall. No. 7 (1976) 17.Google Scholar
  4. 4.
    W. Schatt and E. Friedrich, Powd. Met. Int. 13 (1981) 15.Google Scholar
  5. 5.
    W. Schatt, E. Friedrich and K.-P. Wieters, Versetzungsaktiviertes Festphasensintern, Leipzig: VEB Dt. Verlag für Grundstoffindustrie (1985).Google Scholar
  6. 6.
    F. Sauerwald and L. Holub. Z. Elektrochemie 39 (1933) 70.Google Scholar
  7. 7.
    W. Schatt and S. E. Heinrich, Planseeber. f. Pulvermet. 18 (1970) 7.Google Scholar
  8. 8.
    W. Schatt and E. Friedrich, Planseeber. f. Pulvermet. 25 (1977) 145.Google Scholar
  9. 9.
    H.-J. Ullrich, A. Herenz, E. Friedrich, W. Schatt and Ch. Döring, Mikrochimica Acta (Wien) (1983) I, 175.Google Scholar
  10. 10.
    W. Schatt and E. Friedrich, Z. Metallkde. 73 (1982) 56.Google Scholar
  11. 11.
    W. Schatt, K.-P. Wieters and M. Rolle, in Vorbereitung.Google Scholar
  12. 12.
    J. E. Geguzin, Physik des Sinterns, Leipzig: Dt. Verlag für Grundstoffindustrie (1973).Google Scholar
  13. 13.
    E. Arzt, W. Schatt, E. Friedrich and A. Scheibe, in Vorbereitung.Google Scholar
  14. 14.
    G. C. Kuczynski, J. Metals 1 (1949) 196.Google Scholar
  15. 15.
    G. C. Kuczynski, J. Appl. Phys. 20 (1949) 1160.CrossRefGoogle Scholar
  16. 16.
    G. C. Kuczynski, Metals Transactions (1949) February, 169.Google Scholar
  17. 17.
    W. Schatt, J. I. Boiko, E. Friedrich and A. Scheibe, Powd. Met. Int. 16 (1984) 9.Google Scholar
  18. 18.
    A. M. Kosevic, Uspechi fisiceskich nauk, 114 (1974) 509.CrossRefGoogle Scholar
  19. 19.
    J. E. Geguzin, Solid state physics (UdSSR) (1975) 1950.Google Scholar
  20. 20.
    R. Raj and M. F. Ashby, Met. Trans. 2 (1971) 1113.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • W. Schatt
    • 1
  • E. Friedrich
    • 1
  1. 1.Technical University DresdenGDR

Personalised recommendations