Skip to main content

Pathophysiology of the Pulmonary Circulation

  • Chapter

Abstract

The pulmonary vasculature is the crossroad between the right and left ventricles. Therefore, the circumstances under which the pulmonary circulation operates are the key to understanding the pathophysiology of pulmonary heart disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weibel ER. Morphometry of the Human Lung. New York: Academic Press. 1963.

    Google Scholar 

  2. Von Hayck H. The Human Lung. New York: Hafner Press, 1960.

    Google Scholar 

  3. Mead J, Takishima T, Leith D. Stress distribution in lungs: A model of pulmonary elasticity. J Appl Physiol 28: 596–608, 1970.

    PubMed  CAS  Google Scholar 

  4. Grant BJB, Fortune J, West JB. Effect of local antigen inhalation and hypoxia on lobar blood flow in allergic dogs. Am Rev Respir Dis 122: 39–46, 1980.

    PubMed  CAS  Google Scholar 

  5. Miller WS. The Lung, 2nd edition. Springfield. III: Thomas, 1947.

    Google Scholar 

  6. Modell HI, Beck K, Butler J. Functional aspects of canine bronchial-pulmonary vascular communications. J App. Physiol 50: 1045–1051, 1981.

    CAS  Google Scholar 

  7. Cudkowicz L. Bronchial arterial blood flow in man. Med Thorac 19: 582–597, 1962.

    PubMed  CAS  Google Scholar 

  8. Horsfield K, Cumming G. Morphology of the bronchial tree in man. J Appl Physiol 24: 373–383, 1968.

    PubMed  CAS  Google Scholar 

  9. Singhal S, Henderson R, Horsfield K, Harding K, Gumming G. Morphology of the human pulmonary arterial tree. Circ Res 33: 190–197, 1973.

    PubMed  CAS  Google Scholar 

  10. Horsfield K. Morphology of branching trees related to entrophy. Respir Physiol 29: 179–184, 1977.

    PubMed  CAS  Google Scholar 

  11. Reid L. Structural and functional reappraisal of the pulmonary artery system. In The Scientific Basis of Medicine—Annual Reviews. London: Atholone Press, 1968.

    Google Scholar 

  12. Wagenvoort G A. Morphologic changes in intrapulmonary veins. Hum Pathol 1: 205–213, 1970.

    PubMed  CAS  Google Scholar 

  13. Weibel ER. Morphometry of the pulmonary circulation. Prog Resp Res 5: 2–12, 1969.

    Google Scholar 

  14. Spencer H, Leof D. The innervation of the human lung. J Anat (London) 98: 599–608, 1964.

    CAS  Google Scholar 

  15. Hebb C. Motor innervation of the pulmonary blood vessels in mammals. In The Pulmonary Circulation and Interstitial Space, Fishman AP, Hecht HH (eds). Chicago: University of Chicago Press, 1969.

    Google Scholar 

  16. Hales S. Statistical essays: Containing haemastaticks. Reprinted (1964) No. 22 History of Medicine Series, Library of New York Academy of Medicine, Hafner NY, 1733.

    Google Scholar 

  17. Frank O. Die Grundform des arteriellen Pulses Erste Abhandlung. Mathematische Analyse. Z Biol 37: 483–526, 1899.

    Google Scholar 

  18. Lee G de J, Dubois AB. Pulmonary capillary blood flow in man. J Clin Invest 34: 1380–1390. 1955.

    PubMed  CAS  Google Scholar 

  19. Caro CG, Harrison GK, Mognoni P. Pressure wave transmission in the human pulmonary circulation. Cardiovasc Res 1: 91–100, 1967.

    PubMed  CAS  Google Scholar 

  20. Staub NC. Gas exchange vessels in the cat lung. Fed Proc 29: 107. 1961.

    Google Scholar 

  21. Sobol BJ, Bottex G, Emirgil C, Gissen H. Gaseous diffusion from alveoli to pulmonary vessels of considerable size. Circ Res 3: 71–79, 1963.

    Google Scholar 

  22. Jameson AG. Gaseous diffusion from alveoli into pulmonary arteries. J Appl Physiol 19: 448–456, 1964.

    PubMed  CAS  Google Scholar 

  23. Gil J. Morphological aspects of alveolar microcirculation. Fed Proc 37: 2462–2465, 1978.

    PubMed  CAS  Google Scholar 

  24. Sobin SS, Tremer HM, Fung Y-C. The morphometric basis of the sheet-flow concept of the pulmonary alveolar microcirculation in the cat. Circ Res 26: 397–414, 1970.

    PubMed  CAS  Google Scholar 

  25. Warrell DA, Evans JW, Clarke RO, Kingsby GP, West JB. Pattern of filling in the pulmonary capillary bed. J Appl Physiol 32: 346–356. 1972.

    PubMed  CAS  Google Scholar 

  26. Staub NC, Schultz EL. Pulmonary capillary length in dog, cat and rabbit. Respir Physiol 5: 371–378. 1968.

    PubMed  CAS  Google Scholar 

  27. West JB, Schneider AM, Mitchell MM. Recruitment in networks of pulmonary capillaries. J Appl Physiol 39: 976–984, 1975.

    PubMed  CAS  Google Scholar 

  28. Fung Y-C, Sobin SS. Theory of sheet flow in lung alveoli. J Appl Physiol 26: 472–488, 1969.

    PubMed  CAS  Google Scholar 

  29. Fung Y-C, Sobin SS. Pulmonary alveolar sheet elasticity. Circ Res 30: 951–969, 1972.

    Google Scholar 

  30. Glazier JB, Hughes JMB, Maloney JE. West JB. Measurement of capillary dimensions and blood volume in rapidly frozen lungs. J Appl Physiol 26: 65–76, 1969.

    PubMed  CAS  Google Scholar 

  31. Wagner WW Jr, Latham LP, Gillespie MN, Gunther JP, Capen RL. Direct measurement of pulmonary capillary transitions. Science 218: 379–381, 1982.

    PubMed  Google Scholar 

  32. Fowler KT. The vertical gradient of perfusion in the erect human lung. J Appl Physiol 20: 1163–1172, 1965.

    Google Scholar 

  33. Permutt S, Caldini P. Maseri A, Palmer WH, Sasamori T, Zierler K. Recruitment versus distention in the pulmonary vascular bed. In The Pulmonary Circulation and Interstitial Space, AP Fishman, HH Hecht (eds). Chicago: University of Chicago Press, 1969. pp. 375–387.

    Google Scholar 

  34. Burton AC. On the physical equilibrium of small blood vessels. AmJ Physiol 164: 319–329, 1951.

    CAS  Google Scholar 

  35. Zweifach BW, Intaglietta M. Mechanics of fluid movement across single capillaries in the rabbit. Microvasc Res 1: 83–101, 1968.

    Google Scholar 

  36. Wagner P, Read J, McRae J. Stratified distribution of blood flow in secondary lobules of the rat lung. J Appl Physiol 22: 1115–1123. 1967.

    PubMed  CAS  Google Scholar 

  37. Young I, Mazzone RW, Wagner PD. Identification of functional lung unit in the dog by gradual vascular embolization. J Appl Physiol 49: 132–141, 1980.

    PubMed  CAS  Google Scholar 

  38. Bhattacharya J, Staub NC. Direct measurement of microvascular pressures in the isolated perfused dog lung. Science 210: 327–328. 1980.

    PubMed  CAS  Google Scholar 

  39. McDonald DA. Blood Flow in Arteries. Baltimore: Williams & Wilkins, 1974.

    Google Scholar 

  40. Whitmore RL. Rheology of the Circulation. Oxford: Pergamon Press. 1968.

    Google Scholar 

  41. Murray JF, Karp RB. Nadel JA. Viscosity effects on pressure-flow relations and vascular resistance in dogs’ lungs. J Appl Physiol 27: 336–341, 1969.

    PubMed  CAS  Google Scholar 

  42. Milnor WR, Conti CR, Lewis KB, O’Rourke MF. Pulmonary arterial pulse wave velocity and impedance in man. Circ Res 25: 637–649, 1969.

    PubMed  CAS  Google Scholar 

  43. Westerhof N, Sipkema P, Wlzinga G, Murgo JP, Giolma JP. Arterial impedance. In Quantitative Cardiovascular Studies, MHC Henry, DR Gross, DJ Patel (eds). Baltimore: University Park Press, 1979, pp. 111–150.

    Google Scholar 

  44. VanDenBos GC, Westerhof M, Randall OS. Pulse wave reflection: Can it explain the difference between systemic and pulmonary pressure and flow wave? A study in dogs. Circ Res 51: 479–485. 1982.

    CAS  Google Scholar 

  45. Engelberg J, Dubois AB. Mechanics of pulmonary circulation in isolated rabbit lungs. Am J Physiol 196: 401–414, 1959.

    PubMed  CAS  Google Scholar 

  46. Reuben SR, Gersh BJ, Swadling JP, Lee G de J. Measurement of pulmonary arterial distensibility in the dog. Cardiovasc Res 4: 473–481, 1970.

    PubMed  CAS  Google Scholar 

  47. Milnor WR, Bergel DN, Barginer JD. Hydraulic power associated with pulmonary blood flow and its relations to heart rate. Circ Res 19: 467–480. 1966.

    PubMed  CAS  Google Scholar 

  48. Skalak R, Weiner F, Morkin E, Fishman AP. The energy distribution in the pulmonary circulation. II. experiments. Phys Med Biol 11: 437–449, 1966.

    PubMed  CAS  Google Scholar 

  49. Pace JB. Sympathetic control of pulmonary vascular impedance in anesthetized dogs. Circ Res 29: 555–568, 1971.

    PubMed  CAS  Google Scholar 

  50. Pace JB, Cox RH, Alvarez-Vara F, Kaareman G. Influence of sympathetic stimulation on pulmonary hydraulic input power. Am J Physiol 222: 196–201, 1972.

    PubMed  CAS  Google Scholar 

  51. Ingram RH, Szidon JP, Skalak R, Fishman AP. Effect of sympathetic nerve stimulation on the pulmonary arterial tree of the isolated lobe perfused in situ. Circ Res 22: 801–815. 1968.

    PubMed  CAS  Google Scholar 

  52. Howell JBL, Permutt S, Proctor DF, Riley RL. Effect of inflation of the lung on different parts of pulmonary vascular bed. J Appl Physiol 16: 71–76, 1961.

    PubMed  CAS  Google Scholar 

  53. Mead J, Whittenberger JL. Lung inflation and hemodynamics. In Handbook of Physiology, Respiration Volume I. Washington DC: American Physiological Society, 477–486, 1964.

    Google Scholar 

  54. Riley RL. Effect of lung inflation upon the pulmonary vascular bed. In Pulmonary Structure and Function, De Reuch A VS. O’Conner M (eds). London: Churchill. 1962. pp. 261–272.

    Google Scholar 

  55. Thomas LJ Jr, Griffo ZJ, Roos A. Effect of negative-pressure inflation of the lung on pulmonary vascular resistance. J Appl Physiol 16: 451–456, 1961.

    PubMed  Google Scholar 

  56. Whittenberger JL, McGregor M, Berglung E, Borst HG. Influence of state of inflation of the lung on pulmonary vascular resistance. J Appl Physiol 15: 878–882, 1960.

    PubMed  CAS  Google Scholar 

  57. Mead J, Whittenberger JL, Radtord EP Jr. Surface tension as a factor in pulmonary volume-pressure hysteresis. J Appl Physiol 10: 191–196, 1957.

    PubMed  CAS  Google Scholar 

  58. Lloyd TC, Wright GW. Pulmonary vascular resistance and vascular transmural gradient. J Appl Physiol 15: 241–245, 1960.

    PubMed  Google Scholar 

  59. Bruderman J, Sommers K, Hamilton WK, Tooley WH, Butler J. Effect of surface tension on circulation in the excised lungs of dogs. J Appl Physiol 19: 707–712, 1964.

    PubMed  CAS  Google Scholar 

  60. Pain MCF, West JB. Effect of the volume historv of the isolated lung on distribution of blood flow. J Appl Physiol 21: 1545–1550, 1966.

    PubMed  CAS  Google Scholar 

  61. Rosenzweig DY, Hughes JMB, Glazier JB. Effect of transpulmonary and vascular pressures on pulmonary blood volume in isolated lung. J Appl Physiol 28: 553–560, 1970.

    PubMed  CAS  Google Scholar 

  62. West JB, Dollery CT, Naimark A. Distribution of blood flow in isolated lung; relation to vascular and alveolar pressures. J Appl Physiol 19: 713–724, 1964.

    PubMed  CAS  Google Scholar 

  63. Banister J, Torrance RW. The effects of tracheal pressure upon flow: Pressure relations in the vascular bed of isolated lungs. Quart J Exp Physiol 45: 352–357, 1960.

    PubMed  CAS  Google Scholar 

  64. Permutt S, Bromberger-Barnea B, Bane NH. Alveolar pressure, pulmonary venous pressure and the vascular waterfall. Med Thorac 19: 239–260, 1962.

    PubMed  CAS  Google Scholar 

  65. DeBono EF, Caro CG. Effect of lung-inflating pressure on pulmonary blood pressure and flow. Am J Physiol 205: 1178–1186, 1963.

    Google Scholar 

  66. Tooker J, Huseby J, Butler J. The effect of Swan-Ganz catheter height on the wedge pressure-left atrial pressure relationship in edema during positive pressure relationship in edema during positive pressure ventilation. Am Rev Respir Dis 117: 721–725, 1978.

    PubMed  CAS  Google Scholar 

  67. Hughes JMB, Glazier JB, Maloney JE, West JB. Effect of extra-alveolar vessels on distribution of blood flow in dog lung. J Appl Physiol 25: 701–712, 1968.

    PubMed  CAS  Google Scholar 

  68. Fung Y-C, Sobin SS. Pulmonary alveolar blood flow. Circ Res 30: 470–490, 1972.

    PubMed  CAS  Google Scholar 

  69. Anthonisen NR, Milic-Emili J. Distribution of pulmonary perfusion in erect man. J Appl Physiol 21: 760–766. 1966.

    PubMed  CAS  Google Scholar 

  70. Hoppin FG Jr, York E, Kuhl DE. Hyde RW. Distribution of pulmonary blood flow as affected by transverse (+ Gx) acceleration. J Appl Physiol 22: 465–474, 1967.

    Google Scholar 

  71. Permutt S. Effect of interstitial pressure of the lung on pulmonary circulation. Med Thorac 22: 118–131, 1965.

    PubMed  CAS  Google Scholar 

  72. Hughes JMB, Glazier JB, Maloney JE, West JB. Effect of lung volume on the distribution of pulmonary blood flow in man. Respir Physiol 4: 58–72, 1968.

    PubMed  CAS  Google Scholar 

  73. Hughes JMB, Glazier JB, Rosenzweig DY, West JB. Factors determining the distribution of pulmonary blood flow in patients with raised venous pressure. Clin Sci 37: 847–858, 1969.

    PubMed  CAS  Google Scholar 

  74. Milic-Emili J, Henderson JAM, Dolovich MB, Trop D, Kaneko K. Regional distribution of inspired gas in the lung. J Appl Physiol 21: 749–759, 1966.

    PubMed  CAS  Google Scholar 

  75. Milic-Emili J, Mead J, Turner JM. Topography of esophageal pressure as a function of posture in man. J Appl Physiol 19: 212–216, 1964.

    PubMed  CAS  Google Scholar 

  76. Glazier JB, Hughes JMB, Maloney JE, West JB. Vertical gradient of alveolar size in lungs of dogs frozen intact. J Appl Physiol 23: 694–705, 1967.

    PubMed  CAS  Google Scholar 

  77. Ritchie BC, Schauberger G, Staub NC. Inadequacy of perivascular edema hypothesis to account for distribution of pulmonary blood flow in lung edema. Circ Res 24: 807–814, 1969.

    PubMed  CAS  Google Scholar 

  78. Harris P, Segel N, Bishop JM. The relation between pressure and flow in the pulmonary circulation in normal subjects and in patients with chronic bronchitis and mitral stenosis. Cardiovasc Res 2: 73–83, 1968.

    PubMed  CAS  Google Scholar 

  79. Widimsky J. Pressure, flow and volume changes of the lesser circulation during pulmonary artery occlusion in healthy subjects and patients with pulmonary hypertension. Prog Resp Res 5: 224–236, 1969.

    Google Scholar 

  80. Even P, Divoux P, Ruff F, Caubarrere I, deVernejoul P, Brouet G. The pressure-flow relationship of the pulmonary circulation in normal man and in chronic obstructive pulmonary disease. Effects of muscular exercise. Scand J Respir Dis 77 (Suppl): 72–76, 1971.

    CAS  Google Scholar 

  81. Lockhart A, Zelter M, Mensch-Dechene J, Antezana G, Paz-Zamora, Vargas E, Coudert J. Pressure-flow-volume relationships in pulmonary circulation of normal Highlanders. J Appl Physiol 41: 449–156, 1976.

    PubMed  CAS  Google Scholar 

  82. West JB. Regional differences in gas exchange in the lung of erect man. J Appl Physiol 17: 893–898, 1962.

    PubMed  CAS  Google Scholar 

  83. Woolcock AJ, McRae J, Morris JG, Read J. Abnormal pulmonary blood flow distribution in bronchial asthma. Austral Ann Med 15: 196–203, 1966.

    Google Scholar 

  84. Henderson LL, Tauxe WN, Hyatt RE. Lung scanning in asthmatic patients with, 131I-MAA. S Med J 6: 795–804, 1967.

    Google Scholar 

  85. Mishkin F, Wagner HN, Jr. Regional abnormalities in pulmonary arterial blood flow during acture asthmatic attacks. Radiology 88: 142–144, 1976.

    Google Scholar 

  86. Grant BJB, Levinson ML, Liss HP, Reid CM. Effect of hypoxic vascular tone on lobar pulmonary blood flow response to local antigen challenge (abstract). Am Rev Respir Dis 125: 271, 1982.

    Google Scholar 

  87. Barer GR, Howard P, McCurrie JR, Shaw JW. Changes in the pulmonary circulation after bronchial occlusion in anesthetized dogs and cats. Circ Res 25: 747–764, 1969.

    PubMed  CAS  Google Scholar 

  88. Benumof JL. Mechanism of decreased blood flow to atelectatic lung. J Appl Physiol 46: 1047–1048, 1979.

    PubMed  CAS  Google Scholar 

  89. Fishman AP. Vasomotor regulation of the pulmonary circulation. Ann Rev Phvsiol 42: 211–220, 1980.

    CAS  Google Scholar 

  90. Blackmore WS, Carlens E, Bjorkman S. Effect of unilateral rebreathing of low oxygen gas mixtures upon pulmonary blood flow in man. Surg Forum Proc 5: 691–696, 1955.

    Google Scholar 

  91. Ulmer S, Wenke A. Bronchospirometrische Untersuchungen zur Frage der gasspannungsabhangigen Durchblutungsregulation der Alveolarkapillaren. Arch Kreislaufforsh 26: 256–270, 1957.

    CAS  Google Scholar 

  92. Arborelius M Jr. Kr85 in the study of pulmonary circulation and ventilation during unilateral hypoxia. Scand J Resp Dis 62 (Suppl): 105–108, 1966.

    Google Scholar 

  93. Barer GR, Howard P, Shaw J W. Stimulus-response curves for the pulmonary vascular bed to hypoxia and hypercapnia. J Physiol (London) 211: 139–155, 1970.

    CAS  Google Scholar 

  94. Grant BJB, Davies EE, Jones H, Hughes JMB. Local regulation of pulmonary blood flow and ventilation-perfusion ratios in the coati mundi. J Appl Physiol 40: 216–228, 1976.

    PubMed  CAS  Google Scholar 

  95. Sylvester JT. Harabin AL, Peake MD, Frank RS. Vasodilator and vasoconstrictor responses to hypoxia in isolated pig lungs. J Appl Physiol 49: 820–825, 1980.

    PubMed  CAS  Google Scholar 

  96. Peake MD, Harabin AL, Brennan NJ, Sylvester JT. Steady state vascular responses to graded hypoxia in isolated lungs of five species. J Appl Physiol 51: 1214–1219, 1981.

    PubMed  CAS  Google Scholar 

  97. Fishman AP. Hypoxia and the pulmonary circulation. Circ Res 38: 221–231, 1976.

    PubMed  CAS  Google Scholar 

  98. Wier EK. Does normoxic pulmonary vasodilation rather than hypoxic pulmonary vasoconstriction account for the pulmonary pressor response to hypoxia? Lancet 1: 476–477, 1978.

    Google Scholar 

  99. Lloyd TC Jr. Hypoxic pulmonary vasoconstriction: Role of perivascular tissue. J Appl Physiol 25: 560–565, 1968.

    PubMed  Google Scholar 

  100. Lloyd TC Jr. Responses to hypoxia of pulmonary arterial strips in nonaqueous baths. J Appl Physiol 28: 566–569. 1970.

    PubMed  Google Scholar 

  101. Tucker A, Weir EK, Reeves JT, Grover RF. Failure of histamine antagonists to prevent hypoxic pulmonary vasoconstriction. J Appl Physiol 40: 496–500, 1976.

    PubMed  CAS  Google Scholar 

  102. Weir EK, McMurtry IF, Tucker A, Reeves JT, Grover RF. Prostaglandin synthetase inhibitors do not decrease hypoxic pulmonary vasoconstriction. J Appl Physiol 41: 714–718, 1976.

    PubMed  CAS  Google Scholar 

  103. Unger M, Atkins M, Briscoe WA, King TKC. Potentiation of pulmonary vasoconstriction with intermittent repeated hypoxia. J Appl Physiol 43: 662–667, 1977.

    PubMed  CAS  Google Scholar 

  104. Miller MA, Hales CA. Stability of alveolar hypoxic vasoconstriction with intermittent hypoxia. J Appl Physiol 49: 846–850, 1980.

    PubMed  CAS  Google Scholar 

  105. Daly I de B, Hebb C. Pulmonary and Bronchial Vascular Systems. London: Arnold, 1966, p. 201.

    Google Scholar 

  106. Kato M, Staub NC. Response of small pulmonary arteries to unilobar hypoxia and hypercapnia. Circ Res 19: 426–440, 1966.

    PubMed  CAS  Google Scholar 

  107. Glazier JB, Murray JF, Sites of pulmonary vasomotor reactivity in the dog during alveolar hypoxia and serotonin and histamine infusion. J Clin Invest 50: 2550–2558, 1971.

    PubMed  CAS  Google Scholar 

  108. Hyman AL, Higashida RT, Spannhake EW, Kadowitz PJ. Pulmonary vasoconstrictor responses to graded decreases in pre-capillarv blood PO2 in intact-chest cats. J Appl Physiol 51: 1009–1016, 1981.

    PubMed  CAS  Google Scholar 

  109. Durand J, Ladurie ML, Ranson-Bitker B. Effects of hypoxia and hypercapnia on the repartition of pulmonary blood flow in supine subjects. Prog Resp Res 5: 156–165, 1969.

    Google Scholar 

  110. Viles PH, Shepherd JT. Evidence for a dilator action of carbon dioxide on pulmonary vessels of the cat. Circ Res 2: 325–332, 1968.

    Google Scholar 

  111. Viles PH, Shepherd JT. Relationship between pH, pO2 and pCO2 on the pulmonary vascular bed of the cat. Am J Physiol 215: 1170–1176, 1968.

    PubMed  CAS  Google Scholar 

  112. Barer GR, Shaw JW. Pulmonary vasodilator and vasoconstrictor actions of carbon dioxide. J Physiol (London) 213: 633–645, 1971.

    CAS  Google Scholar 

  113. Benumof JL, Mathers JM, Wahrenbrock EA. Cyclic hypoxic pulmonary vasoconstriction induced by concomitant carbon dioxide changes. J Appl Physiol 41: 466–469, 1976.

    PubMed  CAS  Google Scholar 

  114. Tucker A, Weir EK, Reeves JT, Grover RF. Histamine H1- and H2-receptors in pulmonary and systemic vasculature of the dog. J Appl Physiol 229: 1008–1013, 1975.

    CAS  Google Scholar 

  115. Hyman AL, Spannhake EW, Kadowitz PJ. Prostaglandins and the lung. Am Rev Respir Dis 117: 111–136, 1978.

    PubMed  CAS  Google Scholar 

  116. Mentzner RM, Rubio R, Berne RM. Release of adenosine by hypoxic canine lung tissue and its possible role in the pulmonary circulation. Am J Physiol 229: 1625–1631, 1975.

    Google Scholar 

  117. Weir EK, McLzoch J, Seavy J, Cohen JJ, Grover RF. Platelet antiserum inhibits hypoxic pulmonary vasoconstriction in the dog. J Appl Physiol 41: 211–215, 1976.

    PubMed  CAS  Google Scholar 

  118. Colebatch HJH, Dawes GS, Goodwin JW, Nadeau RA. The nervous control of the circulation in the fetal and newly expanded lungs of the lamb. J Physiol 178: 544–562, 1965.

    PubMed  CAS  Google Scholar 

  119. Ingram RH, Szidon JP, Skalak R, Fishman AP. Effects of sympathetic nerve stimulation on the pulmonary arterial tree of the isolated lung perfused in situ. Circ Res 22: 801–815, 1968.

    PubMed  CAS  Google Scholar 

  120. Daly I de B, Duke H, Hebb CO, Weatheral J. Pulmonary vasomotor fibres in the sympathetic chain and its associated ganglia in the dog. Q J Exp Physiol 34: 285–313, 1948.

    Google Scholar 

  121. Hyman AL, Nandiwada P, Knight DS, Kadowitz PJ. Pulmonary vasodilator response to catecholamines and sympathetic nerve stimulation in the cat. Circ Res 48: 407–415, 1981.

    PubMed  CAS  Google Scholar 

  122. Daly I de B, Hebb C. Pulmonary vasomotor fibres in the cervical vagosympathetic nerve of the dog. Q J Exp Physiol 37: 19–43. 1952.

    Google Scholar 

  123. Downing SE, Lee JC. Nervous control of the pulmonary circulation. Am Rev Physiol 42: 199–210, 1980.

    CAS  Google Scholar 

  124. Wilcox BR, Austin WG, Bender HW. Effect of hypoxia on pulmonary artery pressure of dogs. Am J Physiol 207: 1314–1318, 1964.

    PubMed  CAS  Google Scholar 

  125. Kazemi H, Bruecke PE, Parsons E. Role of autonomic nervous system in the hypoxic response of the pulmonary vascular bed. Respir Physiol 15: 245–254, 1972.

    PubMed  CAS  Google Scholar 

  126. Bayliss WM. On the local reaction of the arterial wall to changes of internal pressure. J Physiol (London) 28: 220–231, 1902.

    CAS  Google Scholar 

  127. Harris P. Patent ductus arteriosus with pulmonary hypertension. Brit Heart J 17: 85–92, 1955.

    PubMed  CAS  Google Scholar 

  128. Hyman AL. Pulmonary vasoconstriction due to nonocclusive distention of large pulmonary arteries in the dog. Circ Res 23: 401–413, 1968.

    PubMed  CAS  Google Scholar 

  129. Juratsch CE, Jengo J A, Laks MM. Role of autonomic nervous system and pulmonary artery receptors in production of experimental pulmonary hypertension. Chest 71 (Suppl): 265–269, 1977.

    PubMed  CAS  Google Scholar 

  130. Kealey GP, Brody MJ. Studies on the mechanism of pulmonary vascular responses to miliary pulmonary embolism. Circ Res 41: 807–814, 1971.

    Google Scholar 

  131. Grant BJB. Effect of local pulmonary blood flow control on gas exchange: Theory. J Appl Physiol 53: 1100–1109, 1982.

    PubMed  CAS  Google Scholar 

  132. Euler von US, Liljestrand G. Observations on the pulmonary arterial blood pressure in the cat. Acta Physiol Scand 12: 304–320. 1946.

    Google Scholar 

  133. Marshall BE, Marshall C. Continuity of response to hypoxic pulmonary vasoconstriction. J Appl Physiol 49: 189–196, 1980.

    PubMed  CAS  Google Scholar 

  134. Marshall BE, Marshall C, Benumof J, Saidman LJ. Hypoxic pulmonary vasoconstriction in dogs: Effect of lung segment size and oxygen tension. J Appl Physiol 51: 1543–1551. 1981.

    PubMed  CAS  Google Scholar 

  135. Grover RF, Hyers TM, McMurtry IF, Reeves JT. High altitude pulmonary edema. In Pulmonary Edema. Fishman AP, Renkin EM (eds). Bethesda: American Physiological Society. 1979.

    Google Scholar 

  136. Reid LM. The pulmonary circulation: Remodeling in growth and disease. Am Rev Respir Dis 119: 531–546. 1979.

    PubMed  CAS  Google Scholar 

  137. Heath DA, Williams DD. Man at High Altitudes. New York: Churchill Livingstone, 1977.

    Google Scholar 

  138. Hislop A, Reid L. New findings in pulmonary arteries of rats with hypoxia-induced pulmonary hypertension. Br J Exp Pathol 57: 542–554. 1976.

    PubMed  CAS  Google Scholar 

  139. Rabinovitch M, Gamble W, Nadas AS, Mettinen OS, Reid L. Rat pulmonary circulation alter chronic hypoxia: Hemodynamic and structural features. Am J Physiol 236: H818–H827, 1979.

    PubMed  CAS  Google Scholar 

  140. Meyrick B, Reid L. The effect of continued hypoxia on rat pulmonary artery circulation. Lab Invest 38: 188–200, 1978.

    PubMed  CAS  Google Scholar 

  141. Heath D. Ultrastructure in pulmonary hypertension. In Pulmonary Circulation in Health and Disease, Cumming G, Bonsignore G (eds). New York: Plenum Press. 1980, pp. 233–248.

    Google Scholar 

  142. Williams JF, Behnke RH. The effect of pulmonary emphysema upon cardiopulmonary hemodynamics at rest and during exercise. Ann Intern Med 60: 824–842, 1964.

    PubMed  Google Scholar 

  143. Burrows B, Kettel LJ. Niden AH, Rabinowitz M, Diener C.F. Patterns of cardiovascular dysfunction in chronic obstructive lung disease. N Engl J Med 286: 912–918. 1972.

    PubMed  CAS  Google Scholar 

  144. Wilson RH, Hoseth W, Dempsey M. The effects of breathing 99.6% oxygen on pulmonary vascular resistance and cardiac output in patients with pulmonary emphysema and chronic hypoxia. Ann Intern Med 42: 629–637, 1955.

    PubMed  CAS  Google Scholar 

  145. Aubier M, Murciano D, Milic-Emili J. Effects of the administration of O2 on ventilation and blood gases in patients with chronic obstructive pulmonary disease during acute respiratory failure. Am Rev Respir Dis 122: 747–754, 1980.

    PubMed  CAS  Google Scholar 

  146. Whitaker W. Pulmonary hypertension in congestive heart failure complicating chronic lung disease. Quart J Med 23: 57–72. 1954.

    PubMed  CAS  Google Scholar 

  147. Abraham A, Cole R, Green I, Hedworth-Whitty R, Clarke S, Bishop J. Factors contributing to the reversible pulmonary hypertension of patients with acute respiratory failure studied by serial observations during recovery. Circ Res 24: 51–60, 1969.

    PubMed  CAS  Google Scholar 

  148. Abraham AS, Kay JM, Cole RB, Pincock AC. A haemodynamic and pathological study of the effect of chronic hypoxia and subsequent recovery on the heart and pulmonary vasculature of the rat. Cardiovasc Res 5: 95–102. 1971.

    PubMed  CAS  Google Scholar 

  149. Levine BE, Bigelow B, Hamstra R, Beckwitt H, Mitchell R, Nett L, Stephen T, Petty TL. The role of long-term continuous oxygen administration in patients with chronic airway obstruction with hypoxemia. Ann Intern Med 66: 639–650, 1967.

    PubMed  CAS  Google Scholar 

  150. Stark RD, Finnegan P, Bishop JM. Long-term domiciliary oxygen in chronic bronchitis with pulmonary hypertension. Brit Med J 1: 467–470, 1973.

    Google Scholar 

  151. Medical Research Council: Long-term domiciliary oxygen therapy in chronic hypoxic cor pulmonale complicating chronic bronchitis and emphysema. Lancet 1: 681–685, 1981.

    Google Scholar 

  152. Nocturnal Oxygen Therapy Trial Group. Continuous or nocturnal oxygen therapy in hypoxemic chronic obstructive lung disease. Ann Intern Med 93: 391–398. 1980.

    Google Scholar 

  153. Weitzenblum E, Loiseau A, Hirth C, Mirhom R, Rasaholinjanahary J. Course of pulmonary hemodynamics in patients with chronic obstructive pulmonary disease. Chest 75: 656–662, 1979.

    PubMed  CAS  Google Scholar 

  154. Kay J.M. Effect of intermittent normoxia on chronic hypoxic pulmonary hypertension, right ventricular hypertrophy and polycythemia in rats. Am Rev Respir Dis 121: 993–1001, 1980.

    PubMed  CAS  Google Scholar 

  155. Nattie EE, Bartlett D, Johnson K. Pulmonary hypertension and right ventricular hypertrophy caused by intermittent hypoxia and hypercapnia in the rat. Am Rev Respir Dis 118: 653–658, 1978.

    PubMed  CAS  Google Scholar 

  156. Boysen PG, Block AJ, Wynne JW, Hunt LA, Flick MR. Nocturnal pulmonary hypertension in patients with chronic obstructive pulmonary disease. Chest 76: 536–542, 1976.

    Google Scholar 

  157. West JB. Ventilation-perfusion relationships. Am Rev Respir Dis 116: 919–943, 1977.

    PubMed  CAS  Google Scholar 

  158. Wagner PD, Laravuso RB, Uhl RR, West JB. Continuous distributions of ventilation-perfusion ratios in normal subjects breathing air and 100% O2 J Clin Invest 54: 54–68, 1974.

    PubMed  CAS  Google Scholar 

  159. Wagner P, Dantzker D, Dueck D, Calusen J, West J. Ventilation-perfusion inequality in chronic obstructive pulmonary disease. J Clin Invest 59: 203–216, 1977.

    PubMed  CAS  Google Scholar 

  160. Wagner P, Saltzman H, West J. Measurement of continuous distributions of ventilation- perfusion ratios: Theory. J Appl Physiol 36: 588–599, 1974.

    PubMed  CAS  Google Scholar 

  161. Harris P, Heath D. The Human Pulmonary Circulation. New York: Churchill Livingstone, 1977, pp. 504–521.

    Google Scholar 

  162. Bove KE, Scott RC. The anatomy of chronic cor pulmonale secondary to intrinsic lung disease. Prog in Cardiovasc Dis 9: 227–238, 1966.

    CAS  Google Scholar 

  163. Mitchell RS, Stanford RE, Silvers GW, Dart G. The right ventricle in chronic airway obstruction: A clinicopathologic study. Am Rev Respir Dis 114: 147–154, 1976.

    PubMed  CAS  Google Scholar 

  164. Scott KWM. A pathological study of the lungs and heart in fatal and nonfatal chronic airways obstruction. Thorax 31: 70–79. 1976.

    PubMed  CAS  Google Scholar 

  165. Cullen JH, Kaemmerlen JT, Daoud A, Katz HL. A prospective clinical-pathological study of the lungs and heart in chronic obstructive lung disease. Am Rev Respir Dis 102: 190–204, 1970.

    PubMed  CAS  Google Scholar 

  166. Symchych PS. Pulmonary hypertension in cystic fibrosis. Arch Path 92: 409–414, 1971.

    PubMed  CAS  Google Scholar 

  167. McIntyre K, Sashara A. The hemodynamic response to pulmonary embolism in patients without prior cardiopulmonary disease. Am J Cardiol 28: 288–294, 1971.

    PubMed  CAS  Google Scholar 

  168. Stanek V, Riedel M, Widimsky J. Hemodynamic monitoring in acute pulmonary embolism. Bull Europ Physiopath Resp 14: 561–572, 1978.

    CAS  Google Scholar 

  169. McIntyre KM, Sasahara AA. Determinants of the cardiovascular responses to pulmonary embolism. In Pulmonary Thromboembolism, Moser K, Stein M (eds). Chicago: Year Book, 1973, pp. 144–159.

    Google Scholar 

  170. McIntyre KM, Sasahara A A. The ratio of pulmonary arterial pressure to pulmonary vascular obstruction. Chest 71: 692–697, 1977.

    PubMed  CAS  Google Scholar 

  171. Alpert JS, Godtfredsen J, Ockene IS, Anas J, Dalen JE. Pulmonary hypertension secondary to minor pulmonary embolism. Chest 73: 795–797, 1978.

    PubMed  CAS  Google Scholar 

  172. Laros CD, Swierenga J. Temporary unilateral pulmonary artery occlusion in the pre-operative evaluation of patients with bronchial carcinoma. Med Thorac 24: 269–283, 1967.

    PubMed  CAS  Google Scholar 

  173. Riedel M, Stanek V, Widimsky J, Prerovsky I. Long-term follow-up of patients with pulmonary thromboembolism. Chest 81: 151–158, 1982.

    PubMed  CAS  Google Scholar 

  174. Dantzker DR, Bower JS. Partial reversibility of chronic pulmonary hypertension caused by pulmonary thromboembolic disease. Am Rev Respir Dis 124: 129–131, 1981.

    PubMed  CAS  Google Scholar 

  175. Permutt S. Mechanical influences of water accumulation in the lungs. In Pulmonary Edema, Fishman AP, Renkin EM (eds). Bethesda: American Physiological Society, 1979, pp. 175–193.

    Google Scholar 

  176. Gabe II. Gault JH, Ross J, Mason DT, Mills CJ, Schillingford JP, Braunwald E. Measurement of instantaneous blood flow velocity and pressure in conscious man with a catheter-tip velocity probe. Circulation 40: 603–414, 1969.

    PubMed  CAS  Google Scholar 

  177. Even P, Sors H, Safran D, Reynaud P. Interaction between ventilation and circulation in bronchial asthma and pulmonary emphysema. In Pulmonary Circulation in Health and Disease, Gumming, G, Bonsignore G (eds). New York: Plenum Press, 1980, pp. 279–293.

    Google Scholar 

  178. Summer WR, Permutt S, Sagana K, Shoukas A, Bromberger-Barnea B. Effects of spontaneous respiration on canine left ventricular function. Circ Res 45: 719, 1979.

    PubMed  CAS  Google Scholar 

  179. Scharf SM, Brown R, Saunders N, Green LH. Effects of normal and loaded spontaneous inspiration on cardiovascular function. J Appl Physiol 47: 582–590, 1979.

    PubMed  CAS  Google Scholar 

  180. Permutt S. Some physiological aspects of asthma: Bronchomuscular contraction and airway calibre. In Identification of Asthma (Ciba Symposium). London: Churchill, 1971, pp. 63–85.

    Google Scholar 

  181. Stalcup SA, Mellins RB. Mechanical forces producing pulmonary edema in acute asthma. N Engl J Med 297: 592–596, 1977.

    PubMed  CAS  Google Scholar 

  182. Robotham JL, Mitzner W. A model of the effects of respiration on left ventricular performance. J Appl Physiol 46: 411–418. 1979.

    PubMed  CAS  Google Scholar 

  183. Guyton AC, Adkins LJ. Quantitative aspects of the collapse factor in relation to venous return. Am J Physiol 177: 523–527, 1954.

    PubMed  CAS  Google Scholar 

  184. Makhjauan FK, Palmer WH, McGregor M. Influence of respiration on venous return in pulmonary emphysema. Circulation 33: 8–16, 1966.

    Google Scholar 

  185. Junod AF. Metabolism, production and release of hormones and mediators in the lung. Am Rev Respir Dis 112: 93–108, 1975.

    PubMed  CAS  Google Scholar 

  186. Said SI, Mutt V. Relationship of spasmogenic and smooth muscle relaxant peptides from normal lung to other vasoactive compounds. Nature 265: 84, 1977.

    PubMed  CAS  Google Scholar 

  187. Hauge A. Role of histamine in hypoxic pulmonary hypertension in the rat. Circ Res 22: 371–383, 1968.

    PubMed  CAS  Google Scholar 

  188. Said SI. Release of biologically active materials from the lung: Release induced by physical and chemical stimuli. In Metabolic Function of the Lung, Bakhle YS, Vane JR (eds). New York: Marcel Dekker. 1977. pp. 297–320.

    Google Scholar 

  189. Dunham BM, Grindlinger GA, Utsunomiya T, Krausz MM, Hechtman HB, Shepro D. Role of prostaglandins in positive end-expiratory pressure-induced negative inotropism. Am J Physiol 241: H783–H788, 1981.

    PubMed  CAS  Google Scholar 

  190. Fisher AB, Steinberg H, Bassett D. Energy utilization of the lung. Am J Med 57: 437–446, 1974.

    PubMed  CAS  Google Scholar 

  191. Kay JM, Keane PM, Suyama KL, Gauthier D. Angiotension-converting enzyme activity and evolution of pulmonary vascular disease in rats with monocrotaline pulmonary hypertension. Thorax 37: 88–96, 1982.

    PubMed  CAS  Google Scholar 

  192. Gillis CN, Huxtable R, Roth R. Effects of monocrotaline pretreatment of rats on removal of 5-hydroxytryptamine and noradrenaline by perfused lung. Brit I Pharmacol 64: 435–143, 1978.

    Google Scholar 

  193. Dantzker DR, Patten GA, Bower JS. Gas exchange at rest and during exercise in adults with cystic fibrosis. Am Rev Respir Dis 125: 400–405. 1982.

    PubMed  CAS  Google Scholar 

  194. Kafer ER. Respiratory function in pulmonary thromboembolic disease. Am J Med 47: 901–915, 1969.

    Google Scholar 

  195. Dantzker DR, Wagner PD, Tornabene VW, Alazraki NP, West JB. Gas exchange after pulmonary thromboembolization in dogs. Circ Res 42: 92–103, 1978.

    PubMed  CAS  Google Scholar 

  196. D’Alonzo GE, Bower IS, Dantzker DR. Gas exchange alterations in acute massive pulmonary embolism in humans (abstract). Chest 82: 223, 1982.

    Google Scholar 

  197. Nadel JA, Colebatch HJH, Olsen CR. Location and mechanism of airway constriction after barium sulfate microembolia. J Appl Physiol 19: 387–394, 1964.

    PubMed  CAS  Google Scholar 

  198. Chernik V, Hodson WH, Greenfield LJ. Effects of chronic pulmonary artery ligation on pulmonary mechanics and surfactant. J Appl Physiol 21: 1315–1320, 1966.

    Google Scholar 

  199. Ohkuda F, Nakahora K, Weidner WJ, Binder A, Staub NC. Lung fluid exchange after uneven pulmonary artery obstruction in sheep. Circ Res 43: 152–161, 1978.

    PubMed  CAS  Google Scholar 

  200. Dantzker DR, Bower J, Mechanisms of gas exchange abnormality in patients with chronic obliterative pulmonary vascular disease. J Clin Invest 64: 1050–1055, 1979.

    PubMed  CAS  Google Scholar 

  201. Dantzker DR, Bower JS. Pulmonary vascular tone improves VA/Q matching in obliterative pulmonary hypertension. J Appl Physiol 51: 607–613. 1981.

    PubMed  CAS  Google Scholar 

  202. Mithoefer JC, Ramirez C, Cook W. The effect of mixed venous oxygenation on arterial blood in chronic obstructive pulmonary disease. Am Rev Respir Dis 117: 259–264, 1978.

    PubMed  CAS  Google Scholar 

  203. Jones NL, Campbell EJM, Edwards RHT, Robertson DG. Clinical Exercise Testing. Philadelphia: W.B. Saunders. 1975.

    Google Scholar 

  204. Wagner PD, Dantzker DR, Dueck R, Depolo JL, Wasserman K, West JB. Distribution of ventilation-perfusion ratios in patients with interstitial lung disease. Chest 69: 256–257, 1976.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Martinus Nijhoff Publishing

About this chapter

Cite this chapter

Grant, B.J.B., Dantzker, D.R. (1984). Pathophysiology of the Pulmonary Circulation. In: Rubin, L.J. (eds) Pulmonary Heart Disease. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2847-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2847-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9797-0

  • Online ISBN: 978-1-4613-2847-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics