Vitamin D pp 665-720 | Cite as

Abnormalities of Vitamin D Metabolism and Action in the Vitamin D Resistant Rachitic and Osteomalacic Diseases

  • Bruce Lobaugh
  • Warner M. BurchJr.
  • Marc K. Drezner


The burgeoning science of vitamin D metabolism and action has brought new perspective to disorders of calcium and bone metabolism in man. Rapid scientific advances have been paralleled by the development of new insights into the pathogenesis of, and new therapies for, human diseases. It is not surprising that the growing body of vitamin D knowledge has been applied to the vitamin D resistant rachitic diseases. Although “vitamin D resistance” may in many instances be a sobriquet imprecisely applied to these diseases, further definition of the disorders must be realized in order to affirm the validity of the newly born scientific assumptions concerning vitamin D.


Phosphate Transport Affected Subject Renal Phosphate Wasting Resistant Rickets Serum Parathyroid Hormone Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mellanby E: An experimental investigation on rickets. Lancet 196: 407–412, 1919.Google Scholar
  2. 2.
    McCollum EV, Simmonds N, Becker JE, Sheley PG: Studies on experimental rickets. XXI. An experimental demonstration of the existence of a vitamin which promotes calcium deposition. J. Biol. Chem. 55: 293–312, 1922.Google Scholar
  3. 3.
    Steenbock H: The induction of growth promoting and calcifying properties in a ration by exposure to light. Science 60: 224–225, 1924.PubMedGoogle Scholar
  4. 4.
    Hess AF, Weinstock M, Helman FD: The antirachitic value of irradiated phytosterol and cholesterol. I. J. Biol. Chem. 63: 305–308, 1925.Google Scholar
  5. 5.
    Nicolaysen R, Eeg-Larsen N, Malmo OJ: Physiology of calcium metabolism. Physiol. Rev. 33: 424–444, 1953.PubMedGoogle Scholar
  6. 6.
    Albright F, Butler AM, Bloom E: Rickets resistant to vitamin D therapy. Am. J. Dis. Child. 54: 529–544, 1937.Google Scholar
  7. 7.
    Christensen JF: Three familial cases of atypical late rickets. Acta Paediatr. Scand. 28: 247–270, 1940 - 1941.Google Scholar
  8. 8.
    Graham JB, McFalls VW, Winters RW: Familial hypophosphatemia with vitamin D resistant rickets. III. Three additional kindreds of sex-linked dominant type with a genetic analysis of four such families. Am. J. Hum. Genet. 11: 311–332, 1959.PubMedGoogle Scholar
  9. 9.
    Winters RW, Graham JB, Williams TF, McFalls VW, Burnett CH: A genetic study of familial hypophosphatemia and vitamin D-resistant rickets with a review of the literature. Medicine (Baltimore) 37: 97–142, 1958.Google Scholar
  10. 10.
    Robertson BR, Harris RC, McCune DJ: Refractory rickets: mechanism of therapeutic action of a calciferol. Am. J. Dis. Child. 64: 948–949, 1942.Google Scholar
  11. 11.
    Stickler GB, Bcabout JW, Riggs BL: Vitamin D-resistant rickets: Clinical experience with 41 typical familial hypophosphatemic patients and 2 atypical nonfamilial cases. Mayo Clin. Proc. 45: 197–213, 1970.PubMedGoogle Scholar
  12. 12.
    Tobler R, Prader A, Taillard W: Die familare primare vitamin D- resistant rachitis (phosphat diabetes). Helv. Paediatr. Acta 11: 209–216, 1956.PubMedGoogle Scholar
  13. 13.
    Burnett CH, Dent CE, Harper C, Warland BJ: Vitamin D resistant rickets: Analysis of 24 pedigrees and hereditary and sporadic cases. Am. J. Med. 36: 222–232, 1964.PubMedGoogle Scholar
  14. 14.
    Harrison HE, Harrison HC, Lifshitz F, Johnson AD: Growth disturbance in hereditary hypophosphatemia. Am. J. Dis. Child. 112: 290–297, 1966.PubMedGoogle Scholar
  15. 15.
    Tracey WE, Campbell RA: Dentofacial development in children with vitamin D-resistant rickets. J. Am. Dent. Assoc. 76: 1026–1031, 1968.Google Scholar
  16. 16.
    Williams TF, Winters RW: Familial (hereditary) vitamin D-resistant rickets with hypophosphatemia. In: The Metabolic Basis of Inherited Disease, Stanbury JB, Wyngaarden JB, Fredrickson DS (eds), 3rd ed, New York, McGraw-Hill, 1972, p 1465–1485.Google Scholar
  17. 17.
    Pierce DS, Wallace WM, Herndon CH: Long term treatment of vitamin D-resistant rickets. J. Bone Joint Surg. 46-A: 979–986, 1964.Google Scholar
  18. 18.
    Stickler GB, Beabout JW, Riggs BL: Vitamin D-resistant rickets due to familial or essential hypophosphatemia. J. Bone Joint Surg. 46-A: 959–964, 1964.Google Scholar
  19. 19.
    Tracy WE, Campbell RA: Dento-facial development in children with vitamin D-resistant rickets. J. Am. Dent. Assoc. 76: 1026–1033, 1968.PubMedGoogle Scholar
  20. 20.
    Soni NN, Marks SC: Microradiography and polarized light study of dental tissues in vitamin D-resistant rickets. Oral Surg. 23: 755–762, 1967.PubMedGoogle Scholar
  21. 21.
    Chan JCM, Lovinger RD, Mamunec P: Renal hypophosphatemic rickets: growth acceleration after long-term treatment with 1,25-dihydroxy-vitamin D3. Pediatrics 66: 445–454, 1980.PubMedGoogle Scholar
  22. 22.
    Glorieux FH, Scriver CR, Reade TM, Goldman H, Roseborough A: Use of phosphate and vitamin D to prevent dwarfism and rickets in X-linked hypophosphatemia. N. Engl. J. Hed. 287: 481–487, 1972.Google Scholar
  23. 23.
    Rasmussen H, Pechet M, Anast C, Mazur A, Gertner J, Broadus AE: Long term tretament of familial hypophosphatemic rickets with oral phosphate and lα-hydroxyvitamin D3. J. Pediatr. 99: 16–25, 1980.Google Scholar
  24. 24.
    McNair SL, Stickler GB: Growth in familial hypophosphatemic vitamin D resistant rickets. N. Engl. J. Med. 281: 511–516, 1969.Google Scholar
  25. 25.
    Greenberg BG, Winters RW, Graham JB: The normal range of serum inorganic phosphorus and its utility as a discriminant in the diagnosis of congenital hypophosphatemia. J. Clin. Endocrinol. 20: 364–379, 1960.Google Scholar
  26. 26.
    Stickler GB: Familial hypophosphatemic vitamin D-resistant rickets. Acta Paediatr. Scand. 58: 213–219, 1969.PubMedGoogle Scholar
  27. 27.
    Lyles KW, Harrelson JM, Drezner MK: The efficacy of vitamin D2 and oral phosphorus therapy in X-linked hypophosphatemic rickets and osteomalacia. J. Clin. Endocrinol. Metab. 54: 307–315, 1982.PubMedGoogle Scholar
  28. 28.
    Drezner MK, Lyles KW, Haussler MR, Harrelson JM: Evaluation of a role for 1,25-dihydroxyvitamin D3 in the pathogenesis and treatment of X-linked hypophosphatemic rickets and osteomalacia. J. Clin. Invest. 66: 1020–1032, 1980.PubMedGoogle Scholar
  29. 29.
    Steindijk R: On the pathogenesis of vitamin D resistant rickets and primary vitamin D resistant rickets. Helv. Paediatr. Acta 17: 65–85, 1962.Google Scholar
  30. 30.
    Stickler GB: External calcium and phosphorus balances in vitamin D-resistant rickets. J. Pediatr. 63: 942–948, 1963.PubMedGoogle Scholar
  31. 31.
    Fanconi G, Giradet P: Familairer persistierender phosphatdiabetes mit D-vitamin-resistenter rachitis. Helv. Paediatr. Acta 7: 14–41, 1952.PubMedGoogle Scholar
  32. 32.
    Lewey JE, Cabana EC, Repetto HA, Canterbury JM, Reiss E: Serum parathyroid hormone in hypophosphatemic vitamin D-resistant rickets. J. Pediatr. 81: 294–298, 1972.Google Scholar
  33. 33.
    Reitz RE, Weinstein RL: Parathyroid hormone secretion in familial vitamin D-resistant rickets. N. Engl. J. Med. 289: 941–945, 1973.PubMedGoogle Scholar
  34. 34.
    Roof BS, Piel CF, Gordan GS: Nature of defect responsible for familial vitamin D-resistant rickets (VDRR) based on radioimmunoassay for parathyroid hormone (PTH). Trans. Assoc. Am. Physicians 85: 172–180, 1972.PubMedGoogle Scholar
  35. 35.
    Fanconi A, Fischer JA, Prader A: Serum parathyroid concentrations in hypophosphatemic vitamin D-resistant rickets. Helv. Paediatr. Acta 29: 187–194, 1974.PubMedGoogle Scholar
  36. 36.
    Arnaud C, Glorieux FH, Scriver CR: Serum parathyroid hormone levels in acquired vitamin D deficiency of infancy. Paediatrics 49: 837–840, 1972.Google Scholar
  37. 37.
    Clorieux FH, Scriver CR: Loss of parathyroid hormone-sensitive component of phosphate transport in X-linked hypophosphatemia. Science 173: 997–1000, 1972.Google Scholar
  38. 38.
    Haddad JG, Chyu KJ, Hahn TJ, Stamp TCB: Serum concentrations of 25-hydroxyvitamin D in sex-linked hypophosphatemic vitamin D-resistant rickets. J. Lab. Clin. Med. 81: 22–27, 1973.PubMedGoogle Scholar
  39. 39.
    Drezner MK, Haussler MR: Serum 1,25-dihydroxyvitamin D in bone disease. N. Engl. J. Med. 300: 435, 1979.Google Scholar
  40. 40.
    Delvin EE, Glorieux FH: Serum 1,25-dihydroxyvitamin D concentration in hypophosphatemic vitamin D resistant rickets. Calcif. Tiss. Int. 33: 173–175, 1981.Google Scholar
  41. 41.
    Lyles KW, Clark AG, Drezner MK: Serum 1,25-dihydroxyvitamin D levels in subjects with X-linked hypophosphatemic rickets and osteomalacia. Calcif. Tiss. Int. 34: 125–130, 1982.Google Scholar
  42. 42.
    Hughes MR, Brumbaugh PF, Haussler MR, Wergedal JE, Baylink DJ: Regulation of serum 1,25-dihydroxyvitamin D3 by calcium and phosphate in the rat. Science 180: 578–580, 1975.Google Scholar
  43. 43.
    Galante L, Colston KW, Evans IM, Byfield PGH, Matthews EW: MacIntyre I: The regulation of vitamin D metabolism. Nature 244: 438–440, 1973.PubMedGoogle Scholar
  44. 44.
    Haussler MR, Hughes M, Baylink D, Littledike ET, Cork D, Pitt M: Influence of phosphate depletion on the biosynthesis and circulating level of 1,25-dihydroxyvitamin D. Adv. Exp. Med. Biol. 81: 233–250, 1977.PubMedGoogle Scholar
  45. 45.
    Domininguez JH, Gray RW, Lemann J: Dietary phosphate deprivation in women and men: effects on mineral and acid balances, parathyroid hormone and the Detabolism of 25(OH)D. J. Clin. Endocrinol. Metab. 43: 1056–1068, 1977.Google Scholar
  46. 46.
    Gray RW, Wilz DR, Caldas AE, Lenann J: The importance of phosphate in regulating plasma l,25(OH)2D levels in humans. Studies in healthy subjects, in calcium stone formers and in patients with primary hyperparathyroidism. J. Clin. Endocrinol. Metab. 45: 299–306, 1977.PubMedGoogle Scholar
  47. 47.
    Lyles KW, Drezner MK: Parathyroid hormone effects on serum 1,25- dihydroxyvitamin D levels in patients with X-linked hypophosphatemic rickets: evidence for abnormal 25-hydroxyvitamin D-1-hydroxy lase activity. J. Clin. Endocrinol. Metab. 54: 638–644, 1982.PubMedGoogle Scholar
  48. 48.
    Scriver CR, Reade TM, DeLuca HF, Hamstra AJ: Serum 1,25-dihydroxyvitamin D levels in normal subjects and in patients with hereditary rickets or bone disease. N. Engl. J. Med. 299: 976–979, 1978.PubMedGoogle Scholar
  49. 49.
    Chesney RW, Mazess RB, Rose P, Hamstra AJ, DeLuca HF: Supranormal 25-hydroxyvitamin D and subnormal 1,25-dihydroxyvitamin D: their role in X-linked hypophosphatemic rickets. Am. J. Dis. Child. 134: 140–143, 1980.PubMedGoogle Scholar
  50. 50.
    Nguyen TM, Guillozo H, Garabedian M, Mallet E, Balsan S: Serum concentration of 24,25-dihydroxyvitamin D in normal children and in children with rickets. Pediatr. Res. 13: 973–976, 1979.PubMedGoogle Scholar
  51. 51.
    Drezner MK, Lyles KW, Harrelson JM: Vitamin D resistant osteomalacias: evaluation of vitamin D metabolism and response to therapy. In: Humoral Control of Calcium Metabolism, Proceedings of the 7th International Conference on Calcium Regulating Hormones, Cohn DV, Talmage RV, Matthews JL (eds), Amsterdam, Excerpta Medica, International Congress Series 511:243–251, 1980.Google Scholar
  52. 52.
    Horst RL: 25-OHD3-26,23-lactone: a metabolite of vitamin D3 that is 5 times more potent than 25-OH-D3 in the rat plasma competitive protein binding radioassay. Biochem. Biophys. Res. Commun. 89: 286–293, 1979.Google Scholar
  53. 53.
    Dent CE: Rickets and osteomalacia from renal tubular defects. J. Bone Joint Surg. (Br) 34B: 266–274, 1952.Google Scholar
  54. 54.
    Rupp W, Swoboda W: Untersuchungen des PO4-Stoffwechsels bei vitamin D resistenter rachitis (“Phosphatdiabetes”). Helv. Paediatr. Acta 10: 135–147, 1955.PubMedGoogle Scholar
  55. 55.
    Winters RW, Graham JB, Williams TF, McFalls VW, Burnett CH: A genetic study of familial hypophosphatemia and vitamin D resistant rickets. Trans. Assoc. Am. Physicians 70: 234–242, 1957.PubMedGoogle Scholar
  56. 56.
    Jackson WP, Dowdle E, Linder GC: Vitamin D-resistant osteomalacia. Br. Med. J. 1: 1269–1274, 1958.PubMedGoogle Scholar
  57. 57.
    Tenenhouse HS, Scriver CR, McInnes RR, Glorieux FH: Renal handling of phosphate in vivo and in vitro by the X-linked hypophosphatemic male mouse: evidence for a defect in the brush border membrane. Kidney Int. 14: 236–244, 1978.PubMedGoogle Scholar
  58. 58.
    Tenenhouse HS, Scriver CR: Renal brush border membrane adaptation to phosphorus deprivation in the Hyp/y mouse. Nature 281: 225–227, 1979.PubMedGoogle Scholar
  59. 59.
    Rasmussen H, Anast C: Familial hypophosphatemia rickets and vitamin D-dependent rickets. In: The Metabolic Basis of Inherited Disease, 5th ed, Stanbury JB, Wyngaarden JB, Frederickson DS, Goldstein JL, Brown MS (eds), New York, McGraw-Hill Book Company, 1983, p 1743–1773.Google Scholar
  60. 60.
    Scriver CR, MacDonald W, Reade T, Glorieux FH, Nogrady BL: Hypophosphatemia nonrachitic bone disease: an entity distinct from X-linked hypophosphatemia in renal defect, bone involvement and inheritance. Am. J. Med. Genet. 1: 101–117, 1977.PubMedGoogle Scholar
  61. 61.
    Dennis VW, Bello-Reuss E, Robinson RR: Response of phosphate transport to parathyroid hormone in segments of rabbit nephron. Am. J. Physiol. 233: F29–F38, 1977.PubMedGoogle Scholar
  62. 62.
    Rasmussen H, Anast C: Familial hypophosphatemic (vitamin D resistant) rickets and vitamin D-dependent rickets. In: The Metabolic Basis of Inherited Disease, 4th ed, Stanbury JB, Wyngaarden JB, Frederickson DS (eds), New York, McGraw-Hill Book Company, 1978, p 1537–1562.Google Scholar
  63. 63.
    Glorieux FH, Morin CL, Travers R, Delvin EE, Poirer R: Intestinal phosphate transport in familial hypophosphatemic rickets. Pediatr. Res. 10: 691–696, 1976.PubMedGoogle Scholar
  64. 64.
    Short EM, Binder JH, Rosenberg LE: Familial hypophosphatemic rickets: defective transport of inorganic phosphate by intestinal mucosa. Science 179: 700–702, 1973.PubMedGoogle Scholar
  65. 65.
    O’Doherty PJA, DeLuca HF, Eicher EM: Lack of effect of vitamin D and its metabolites on intestinal phosphate transport in familial hypophosphatemic mice. Endocrinology 101: 1325–1330, 1977.PubMedGoogle Scholar
  66. 66.
    Beamer WG, Wilson MC, DeLuca HF: Successful treatment of genetically hypophosphatemic mice by 1-hydroxyvitamin D3 but not 1,25-dihydroxy- vitamin D3. Endocrinology 106: 1949–1955, 1980.PubMedGoogle Scholar
  67. 67.
    Tenenhouse HS, Scriver CR: X-linked hypophosphatemia (XLH) in man and the Hyp phenotype in mouse. Evidence for homologies. J. Inherit. Metab. Dis., in press.Google Scholar
  68. 68.
    Eicher EM, Southlard JL, Scriver CR, Glorieux FH: Hypophosphatemia: mouse model for human familial hypophosphatemic vitamin D-resistant rickets. Proc. Natl. Acad. Sci. USA 73: 4667–4671, 1976.PubMedGoogle Scholar
  69. 69.
    Lobaugh B, Drezner MK: Abnormal regulation of renal 25-hydroxy-vitamin D-lα-hydroxylase activity in the X-linked hypophosphatemic mouse. J. Clin. Invest. 71: 400–403, 1983.PubMedGoogle Scholar
  70. 70.
    Giasson SD, Brunette MG, Danan G, Vigneault N, Carriere S: Micro-puncture study of renal phosphorus transport in hypophosphatemic vitamin D-resistant rachitic mice. Pflugers Arch. 371: 33–38, 1977.PubMedGoogle Scholar
  71. 71.
    Cogwell LD, Goldfarb S, Lau K, Slatopolsky E, Zalman SA: Evidence for an intrinsic renal tubular defect in mice with genetic hypophosphatemic rickets. J. Clin. Invest. 63: 1203–1210, 1979.Google Scholar
  72. 72.
    Tenenhouse HS, Scriver CR: The defect in transcellular transport of phosphate in the nephron is located in brush border membranes in X-linked hypophosphatemia (Hyp mouse model). Can. J. Biochem. 56: 640–646, 1978.PubMedGoogle Scholar
  73. 73.
    Sabina RL, Drezner MK, Holmes EW: Reduced renal cortical ribonucleo-side triphosphate pools in three different hypophosphatemic animal models. Biochem. Biophys. Res. Comun. 109: 649–655, 1982.Google Scholar
  74. 74.
    Meyer RA Jr., Gray RW, Kiebzak CM, Mish PM: Altered vitamin D, cyclic nucleotide and trace mineral metabolism in the X-linked hypophosphatemic mouse. In: Phosphate and Minerals in Health and Disease, Massry SG, Ritz E, Jahn H (eds), Plenum, 1980, p 351–359.Google Scholar
  75. 75.
    Kiebzak GM, Meyer RA Jr, Mish PM: X-linked hypophosphateraic mice respond to thyroparathyroidectomy. Min. Elect. Metab. 6: 153–164, 1981.Google Scholar
  76. 76.
    Kiebzak GM, Roos BA, Meyer RA Jr: Secondary hyperparathyroidism in X-linked hypophosphatemic mice. Endocrinology 111: 650–652, 1982.PubMedGoogle Scholar
  77. 77.
    Drezner MK, Lobaugh B: Elevated levels of plasma (bioactive) parathyroid hormone in the X-linked hypophosphatemic mouse. American Society for Bone and Mineral Research (Abstracts), in press.Google Scholar
  78. 78.
    Brunette MG, Charbardes D, Imbert-Teboul M, Clique A, Montegut M, Morel F: Hormone sensitive adenylate cyclase along the nephron of genetically hypophosphateraic mice. Kidney Int. 15: 357–369, 1979.PubMedGoogle Scholar
  79. 79.
    Lobaugh B, Posillico JT, Drezner MK: Abnormal 25-hydroxyvitamin D-l-hydroxylase activity in the X-linked hypophosphatemic mouse: a complex disturbance of regulation (abstract). Clin. Res., in press, April, 1983.Google Scholar
  80. 80.
    Cunningham J, Gomes H, Avioli LV, Chase LR: Abnormal 24-hydroxylation of 25-hydroxyvitamin D in the X-linked hypophosphatemic mouse. Endocrinology, in press, February, 1983.Google Scholar
  81. 81.
    Marie PJ, Travers R, Glorieux FH: Bone response to phosphate and vitamin D metabolites in the hypophosphateraic male mouse. Calcif. Tiss. Int. 34: 158–164, 1982.Google Scholar
  82. 82.
    Marie PJ, Travers R, Glorieux FH: Healing of rickets with phosphate supplementation in the hypophosphatemic male mouse. J. Clin. Invest. 67: 911–914, 1981.PubMedGoogle Scholar
  83. 83.
    Glorieux FH, Marie PJ, Pettifor JM, Delvin EE: Bone response to phosphate salts, ergocalciferol, and calcitrol in hypophosphatemic vitamin D resistant rickets. N. Engl. J. Med. 303: 1023–1031, 1980.PubMedGoogle Scholar
  84. 84.
    Drezner MK, Harrelson JM: 1,25-Dihydroxyvitamin D and phosphate can completely heal the bone disease in X-linked hypophosphateraic rickets/osteomalacia (abstract). Clin. Res. 523A, 1982.Google Scholar
  85. 85.
    Frame B, Smith RW Jr: Phosphate diabetes. Am. J. Med. 25: 771–779, 1958.PubMedGoogle Scholar
  86. 86.
    White JE, Binford CC, Robinson RR, Blackard WG: FamiLial hypophosphatemia: clinical course and necropsy. Arch. Int. Med. 11: 460–464, 1963.Google Scholar
  87. 87.
    Bonjour J-P, Caverzasio J, Muhlbauer R, Trechsel U, Troehler U: Are 1,25(OH) 2 D 3 production and tubular phosphate transport regulated by one common mechanism which would be defective in X-linked hypophosphatemic rickets? In: Vitamin D: Chemical, Biochemical and Clinical Endocrinology of Calcium Metabolism, Norman AW, Schaefer K, Herrath Dv, Grigoleit H-G (eds), Berlin, Walter de Cruyter, 1982, p 427–433.Google Scholar
  88. 88.
    Birge SJ, Muler R: The role of phosphate in the action of vitamin D on the intestine. J. Clin. Invest. 60: 980–988, 1979.Google Scholar
  89. 89.
    Wilson DR, York SE, Jaworski ZF, Yendt ER: Studies in hypophosphateraic vitarain D refractory osteomalacia in adults: oral phosphate supplements as an adjunct to therapy. Medicine (Baltimore) 44: 99–134, 1965.Google Scholar
  90. 90.
    Williams TF, Winters RW, Burnett CH: Familial (hereditary) vitamin D resistant rickets with hypophosphatemia. In: The Metabolic Basis of Inherited Disease, Stanbury JB, Wyngaarden JB, Frederickson DS (eds), New York, McGraw-Hill, 1979 (2nd ed), p 1179–1204.Google Scholar
  91. 91.
    Dent CE: Rickets and osteomalacia of various origins. Birth Defects. Orig. Artie. Ser. 7 (6): 79–85, 1971.Google Scholar
  92. 92.
    Dent CE: Rickets (and osteomalacia), nutritional and metabolic (1919–69). Proc Roy. Soc. Med. 63: 401–408, 1970.Google Scholar
  93. 93.
    Stickler GB, Jowsey J, Bianco AJ Jr: Possible detrimental effect of large doses of vitamin D in familial hypophosphatemic vitamin D resistant rickets. J. Pediatr. 79: 68–71, 1971.PubMedGoogle Scholar
  94. 94.
    Moncrief MW, Chance CW: Nephrotoxic effect of vitamin D therapy in vitamin D refractory rickets. Arch. Dis. Child. 44: 571–579, 1969.Google Scholar
  95. 95.
    Paunier L, Kooh SW, Cohen PE, Gibson AAM, Fraser D: Renal function and histology after long term vitamin D therapy of vitamin D refractory rickets. J. Pediatr. 73: 833–844, 1968.PubMedGoogle Scholar
  96. 96.
    Costa T, Marie PJ, Scriver CR, Cole DEC, Reade TM, Norgrady B, Glorieux FH, Delvin EE: X-linked hypophosphatemia: effect of calcitrol on renal handling of phosphate, serum phosphate and bone mineralization. J. Clin. Endocrinol. Metab. 52: 463–477, 1981.PubMedGoogle Scholar
  97. 97.
    McCance RA: Osteomalacia with Looser’s nodes (milkman’s syndrome) due to raised resistance to vitamin D acquired about the age of 15 years. Q. J. Med. 16: 33–46, 1947.PubMedGoogle Scholar
  98. 98.
    Prader A: Rachitis infolge knochentumors. Helv. Paediatr. Acta 14: 554–565, 1959.PubMedGoogle Scholar
  99. 99.
    Drezner MK, Feinglos MN: Osteomalacia due to a 1,25-dihydroxy-cholecalciferol deficiency. Association with a giant cell tumor of bone. J. Clin. Invest. 61: 1046–1053, 1977.Google Scholar
  100. 100.
    Stanbury SW: Osteomalacia. Clinics Endocrinol. Metab. 1: 239–266, 1972.Google Scholar
  101. 101.
    Daniels RA, Weisenfeld I: Tumorous phosphaturic osteomalacia. Report of a case associated with multiple hemangiomas of bone. Am. J. Med. 67: 155–159, 1979.PubMedGoogle Scholar
  102. 102.
    Camus JP, Crouzet J, Pries A, Guillemant S, Ulmann A, Koeger AC: Osteomalacies hypophosphoremiques gueries par l’ablation de tumeurs benignes du tissu conjonctif. Ann. Med. Interne (Paris) 131: 422–426, 1980.Google Scholar
  103. 103.
    Parker MS, Klein I, Haussler MR, Mintz DH: Tumor induced osteomalacia: evidence of a surgically correctable alteration in vitamin D metabolism. J. Am. Med. Assoc. 245: 492–493, 1981.Google Scholar
  104. 104.
    Sweet RA, Males JL, Hamstra AJ, DeLuca HF: Vitamin D metabolite levels in oncogenic osteomalacia. Ann. Int. Med. 93: 279–280, 1980.PubMedGoogle Scholar
  105. 105.
    Milgram JW, Compere CL: Hypophosphatemic vitamin D refractory osteomalacia with bilateral femoral pseudofractures. Clin. Orthop. Rel. Res. 160: 78–85, 1981.Google Scholar
  106. 106.
    Turner ML, Dalinka MK: Osteomalacia: uncommon causes. Am. J. Rheum. 133: 539–540, 1979.Google Scholar
  107. 107.
    Melik RA, Larkins RG, Greenberg PB, Wark JD: Osteomalacia due to unusual causes presenting in adults. Aust. NZ J. Med. 9: 253–257, 1979.Google Scholar
  108. 108.
    Yoshikawa S, Nakamura T, Takagi M, Imamura T, Okano K, Sasaki S: Benign osteoblastoma as a cause of osteomalacia. A report of two cases. J. Bone Joint Surg. 59B: 279–286, 1977.Google Scholar
  109. 109.
    Wener M, Cohen L, Bar RS, Strottmann MP, DcLuca HF: Regulation of phosphate and calcium metabolism by vitamin D metabolites: studies in a patient with oncogenic osteomalacia. Am. Rheum. Assoc. (Abstracts), p 143, 1979.Google Scholar
  110. 110.
    Peacock M, Heyburn PJ, Aaron JE: Vitamin D resistant hypophosphatemic osteomalacia: treatment with 1α-hydroxyvitamin D 3 . Clin. Endocrinol. 7 (Suppl): 231–237, 1977.Google Scholar
  111. 111.
    Asnes RS, Berdon WE, Bassett CA: Hypophosphatemic rickets in an adolescent cured by excision of a nonossifying fibroma. Clin. Pediatr. 20: 646–648, 1981.Google Scholar
  112. 112.
    Fukumoto Y, Tarui S, Tsukiyama K, Ichihara K, Moriwaki K, Nonaka K, Mizushima T, Kobayashi Y, Dokoh S, Fukunagu M, Morita R: Tumor-induced vitamin D resistant hypophosphatemic osteomalacia associated with proximal renal tubular dysfunction and 1,25-dihydroxyvitamin D-deficiency. J. Clin. Endocrinol. Metab. 49: 873–878, 1979.PubMedGoogle Scholar
  113. 113.
    Nortman DF, Brautbar N, Coburn JW, Haussler MR, Singer FR, Brickman AS, Barton RT: Response of tumor associated osteomalacia to 1,25- dihydroxyvitamin D 3 (abstract). Clin. Res. 92A, 1979.Google Scholar
  114. 114.
    Popovtzer MM: Tumor-induced hypophosphatemic osteomalacia (TIO): evidence for a phosphaturic cAMP-independent action of tumor extract (abstract). Clin. Res. 29: 418A, 1981.Google Scholar
  115. 115.
    Nitzan DW, Marnary Y, Azaz B: Mandibular tumor-induced muscular weakness and osteomalacia. Oral Surg. 52: 253–256, 1981.PubMedGoogle Scholar
  116. 116.
    Hauge BN: Vitarain D-resistant osteomalacia. Acta Med. Scand. 153: 271–282, 1956.PubMedGoogle Scholar
  117. 117.
    Fukumoto Y, Ichihara K, Moriwaki K, Nonaka K, Tarui S: Tumor-induced vitamin D resistant hypophosphatemic osteomalacia: phosphaturic substance in tumor and urine of the patient. In: Hormonal Control of Calcium Metabolism, Cohn DV, Talmage RV, Matthews JL (eds), Amsterdam, Excerpta Medica, 1981, p 420.Google Scholar
  118. 118.
    Gotlieb NE, Hagert DT, Baldassare A, Weiss T, Etzkorn J: Oncogenic osteomalacia associated with a Schwannoma (abstract). Clin. Res. 29: 732A, 1981.Google Scholar
  119. 119.
    Aschinberg LC, Solomon LM, Zeis PM, Justice P, Rosenthal IM: Vitamin D-resistant rickets associated with epidermal nevus syndrome: demonstration of a phosphaturic substance in the dermal lesions. J. Pediatr. 91: 56–60, 1977.PubMedGoogle Scholar
  120. 120.
    Dent CE, Stamp TCB: Vitamin D rickets and osteomalacia. In: Metabolic Bone Disease, Vol. I, Avioli LV, Krane SM (eds), New York, Academic Press, 1978, p 237–305.Google Scholar
  121. 121.
    Bhattacharyya M, DeLuca HF: Subcellular location of rat liver calciferol-25-hydroxylase. Arch. Biochem. Biophys. 160: 58–62, 1974.PubMedGoogle Scholar
  122. 122.
    Lyles KW, Berry WR, Haussler M, Harrelson JM, Drezner MK: Hypophosphatemic osteomalacia: association with prostatic carcinoma. Ann. Intern. Med. 93: 275–278, 1980.PubMedGoogle Scholar
  123. 123.
    Charhon S, Rouillat M, Bouvier M, Meunier PJ, Lejeune E: Osteomalacic vitaminosensible au cours des metastases osseuses condersantes prostatiques. A. propos de deux cas. Rev. Rhum. Mai. Osteoartic 48: 469–476, 1981.Google Scholar
  124. 124.
    Hosking DJ, Chamberlain MJ, Shortlund-Webb WR: Osteomalacia and carcinoma of prostate with major redistribution of skeletal calcium. Br. J. Radiol. 48: 451–456, 1975.PubMedGoogle Scholar
  125. 125.
    Delbarre F, Ghozlan R, Amor B: Metastases osseuses avec osteomalacia au cours du cancer de la prostate deux observations. Nouv. Presse Med. 26: 1277–1278, 1975.Google Scholar
  126. 126.
    Quilichini R, Aubert L, Chauvin M, Chaffanjon P, Eisinger J: Metastases osseus condensantes et osteomalacic hypophosphoremique au cours d’un cancer de la prostate. Sen. Hosp. Paris 55: 43–44, 1979.Google Scholar
  127. 127.
    Lyles KW, Lobaugh B, Paulson DF, Drezner MK: Heterotransplantation of prostatic cancer from an affected patient creates an animal model for tumor-induced osteomalacia in the athymic nude mouse (abstract). Calcif. Tiss. Int. S33, 1982.Google Scholar
  128. 128.
    Drezner MK, Lobaugh B, Lyles KW, Carey DE, Paulson DF, Harrelson JM: The pathogenesis and treatment of tumor-induced osteomalacia. In: Vitamin D: Chemical, Biochemical and Clinical Endocrinology of Calcium Metabolism, Norman AW, Schaefer K, Herrath Dv, Crigoleit H-C (eds), Berlin, Walter de Cruyter, 1982, p 949–954.Google Scholar
  129. 129.
    Fraser D, Salter RB: The diagnosis and management of the various types of rickets. Pediatr. Clin. N. Am. 5: 417–435, 1958.Google Scholar
  130. 130.
    Prader Av, Illig R, Heierli E: Eine besondere form der primaren vitamin-D resistenten rachitis mit hypocalcamie und autosomal-dominatem erbgang: die hereditäre pseudo-mangelrachitis. Helv. Pediatr. Scand. 16: 452–464, 1961.Google Scholar
  131. 131.
    Stoop JW, Schraagen JC, Tiddens HAMW: Pseudo-vitamin D deficiency rickets, report of four new cases. Acta Pediatr. Scand. 56: 607–616, 1967.Google Scholar
  132. 132.
    Matsuda I, Sugai M, Ohsawa T: Laboratory findings in child with pseudovitamin D deficiency rickets. Helv. Paediatr. Acta 24: 329–336, 1969.PubMedGoogle Scholar
  133. 133.
    Bergstrom WH, Gardner LI: Metabolie disorders with bone lesions. In: Textbook of Pediatrics, Vaughan VC, McKay RJ, Nelson WE (eds), Philadelphia, Saunders, 1975, p 1503–1511.Google Scholar
  134. 134.
    Scriver CR: Vitamin D dependency. Pediatrics 45: 361–363, 1970.PubMedGoogle Scholar
  135. 135.
    Hamilton R, Harrison J, Fraser D, Raddle I, Morecki R, Paunier L: The small intestine in vitamin D dependent rickets. Pediatries 45: 364–373, 1970.Google Scholar
  136. 136.
    Fraser D, Kooh SW, Kind HO, Holick MF, Tanaka Y, DeLuca HF: Pathogenesis of hereditary vitamin D dependent rickcts: an inborn error of vitamin D metabolism involving defective conversion of 25- hydroxyvitamin D to 1,25-dihydroxyvitamin D. N. Engl. J. Med. 289: 817–822, 1973.PubMedGoogle Scholar
  137. 137.
    Rosen JF, Finberg L: Vitamin D-dependent rickets: action of parathyroid hormone and 25-hydroxychoiecalciferol. Pediatr. Res. 6: 552–562, 1972.PubMedGoogle Scholar
  138. 138.
    Prader A, Kind GP, DeLuca HF: Pseudo-vitamin D deficiency (vitamin D dependency). In: Inborn Errors of Calcium and Bone Metabolism, Bricket H, Stern J (eds), Baltimore, University Park Press, 1976, p 115–123.Google Scholar
  139. 139.
    Arnaud C, Maijer R, Reade T, Scriver CR, Whelan DT: Vitamin D dependency: an inherited postnatal syndrome with secondary hyperparathyroidism. Pediatrics 46: 871–880, 1970.PubMedGoogle Scholar
  140. 140.
    Sovik O, Aksnes L, Apold J: Urinary cyclic AMP: high concentration in vitamin D-deficient and dependent rickets. J. Pediatr. 89: 946–949, 1976.Google Scholar
  141. 141.
    Fanconi A, Prader A: Die hereditare pseudoaangelrachitis. Helv. Paediatr. Acta 24: 423–447, 1969.PubMedGoogle Scholar
  142. 142.
    Balsan S, Garabedian M, Leiberherr M, Gueris J, Ulmann A: Serum 1,25-dihydroxyvitarain D concentrations in two different types of pseudodeficiency rickets. In: Vitamin D: Basic Research and Its Clinical Application, Norman AW, Schaefer K, Herrath Dv, Grigoleit H-G, Coburn JW, DeLuca HF, Mawer EB, Suda T (eds), New York, Walter de Gruyter, 1979, p 1143–1149.Google Scholar
  143. 143.
    Reade TM, Scriver CR, Glorieux PH, Nogrady B, Delvin EE, Poirier R, Holick MF, DeLuca HF: Response to crystalline 1α-hydroxy- vitamin D 3 in vitamin D dependency. Pediatr. Res. 9: 593–599, 1975.PubMedGoogle Scholar
  144. 144.
    Wilke R, Harmeyer J, Grabe C, Hehrmann R, Hesch RD: Regulatory hyperparathyroidism in pig breed with vitamin D dependency rickets. Acta Endocrinol. 92: 295–308, 1979.PubMedGoogle Scholar
  145. 145.
    Delvin EE, Glorieux FH, Marie PJ, Pettifor JM: Vitamin D-dependency: replacement therapy with calcitriol, in press.Google Scholar
  146. 146.
    Vecchio F, Carnevale F, Paganetti G, DiBitonto G, Marinelli G: A case of pseudovitamin D deficiency-like rickets in an infant treated with 1,25-dihydroxycholecalciferol: preliminary note. J. Inher. Metab. Dis. 1: 183–185, 1978.PubMedGoogle Scholar
  147. 147.
    Robinow M: Spontaneous recovery from severe rickets resembling pseudo-vitamin D deficiency rickets. Birth Defects 10: 179–186, 1978.Google Scholar
  148. 148.
    Brooks MH, Bell NH, Love L, Stern PH, Orfei E, Queener SF, Harastra AJ, DeLuca HF: Vitamin D dependent rickets type II: resistance of target organs to 1,25-dihydroxyvitamin D. N. Engl. J. Med. 298: 996–999, 1978.PubMedGoogle Scholar
  149. 149.
    Zerwekh JE, Glass K, Jowsey J, Pak CYC: An unique form of osteomalacia associated with end organ refractoriness to 1,25-dihydroxyvitamin D and apparent defective synthesis of 25-hydroxyvitamin D. J. Clin. Endocrinol. Metab. 49: 171–175, 1979.PubMedGoogle Scholar
  150. 150.
    Marx SJ, Spegel AM, Brown EM, Gardner DG, Downs RW Jr, Attie M, Hamstra AJ, DeLuca HF: A familial syndrome of decrease in sensitivity to 1,25-dihydroxyvitamin D. J. Clin. Endocrinol. Metab. 47: 1303–1310, 1978.PubMedGoogle Scholar
  151. 151.
    Liberman UA, Samuel R, Halabe A, Edelstein S, Weissman H, Kauli R: Congenital alopathic or pseudoidiopathic hypoparathyroidism and end organ resistance to 1,25-(OH)2D3-an hereditary congenital syndrome. In: Vitamin D: Basic Research and Its Clinical Application, Norman AW, Schaefer K, Herrath Dv, Grigoleit H-G, Coburn JW, DeLuca HF, Mawer EB, Suda T (eds), New York, Walter de Gruyter, 1979, p 1151–1152.Google Scholar
  152. 152.
    Isuchiya Y, Matsuo N, Cho H: An unusual form of vitamin D-dependent rickets in a child: alopecia and marked end-organ hyposensitivity to biologically active vitamin D. J. Clin. Endocrinol. Metab. 51: 685–690, 1980.Google Scholar
  153. 153.
    Rosen JF, Fleishman AR, Finberg L, Hamstra A, DeLuca HF: Rickets with alopecia: an inborn error of vitamin D metabolism. Pediatrics 94: 729–735, 1979.Google Scholar
  154. 154.
    Gallagher JC, Riggs BL, Eisman J, Hamstra AF, Arnaud SB, DeLuca HF: Intestinal calcium absorption and serum vitamin D metabolites in normal subjects and osteoporotic patients. Effect of age and dietary calcium. J. Clin. Invest. 54: 729–736, 1979.Google Scholar
  155. 155.
    Eil C, Liberman UA, Rosen JF, Marx SJ: A cellular defect in hereditary vitamin D dependent rickets type II. N. Engl. J. Med. 304: 1588–1591, 1981.PubMedGoogle Scholar

Copyright information

© Martinus Nijhoff Publishing, Boston/The Hague/Dordrecht/Lancaster 1984

Authors and Affiliations

  • Bruce Lobaugh
  • Warner M. BurchJr.
  • Marc K. Drezner

There are no affiliations available

Personalised recommendations