Skip to main content

Effect of Vitamin D on Cultured Bone Cells

  • Chapter
Vitamin D
  • 220 Accesses

Abstract

The development of current concepts of the importance of vitamin D in the maintenance of calcium homeostasis and normal growth has for the most part come from whole animal studies and clinical observations along with studies on organ culture of bone, kidney and intestine. The use of such systems however is limited by the complexities of the tissues with respect to the presence of differing cell types with unique functions. This is quite apparent in bone tissue, which contains osteoclasts and osteoblasts, their precursor cells, fibroblasts, and chondrocytes in variable amounts depending on the origin of the bone. Resorption and mineralization can be studied in such preparations in vitro, but because of the variety of cell types and the presence of a large volume of extracellular insoluble matrix, it is difficult to identify the cells responsible for the biochemical changes that are observed upon hormone treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Peck WA, Birge SJ, Fedak SA: Bone Cells: Biochemical and biological studies after enzymatic isolation. Science 146: 1476–1478, 1964.

    Article  PubMed  CAS  Google Scholar 

  2. Wong CL, Cohn DV: Separation of parathyroid hormone and calcitonin sensitive cells from non-responsive bone cells. Nature 252: 713–715, 1974.

    Article  PubMed  CAS  Google Scholar 

  3. Cohn DV, Wong GL: Isolated bone cells. In: Skeletal Research, An Experimental Approach, Simmons DJ, Kunin AS (eds), New York, Academic Press, 1979, p 3–20.

    Google Scholar 

  4. Luben RA, Wong GL, Cohn DV: Biochemical characterization with parathormone and calcitonin of isolated bone cells: Provisional identification of osteoclasts and osteoblasts. Endocrinology 99: 526–534, 1976.

    Article  PubMed  CAS  Google Scholar 

  5. Luben RA, Wong GL, Cohn DV: Parathormone-stimulated resporption of devitalized bone by cultured osteoclast-type bone cells. Nature 256: 629–630, 1977.

    Article  Google Scholar 

  6. Newbrey J, Davies M: Morphological characterization of bone cell isolates placed upon bone matrices. Calcif. Tiss. Res. 33: 298, 1981.

    Google Scholar 

  7. Scott DM, Kent GN, Cohn DV: Collagen synthesis in cultured osteo-blast-like cells. Arch. Biochem. Biophys. 201: 384–391, 1980.

    Article  PubMed  CAS  Google Scholar 

  8. Simmons DJ, Kent GN, Julka RL, Scott DM, Fallon M, Cohn DV: Formation of bone by isolated, cultured osteoblasts in millipore diffusion chambers. Calcif. Tiss. Int. 34: 291–294, 1982.

    Article  CAS  Google Scholar 

  9. Binderman I, Duksin D, Harell A, Katzir E, Sachs L: Formation of bone tissue in culture from isolated bone cells. J. Cell. Biol. 61: 427–439, 1974.

    Article  PubMed  CAS  Google Scholar 

  10. Williams DC, Boder GB, Toomey RE, Paul DC, Hillman CC Jr, King KL, Van Frank RM, Johnston CC Jr: Mineralization and metabolic response in serially passaged adult rat bone cells. Calcif. Tiss. Int. 30: 233–246, 1980.

    Article  CAS  Google Scholar 

  11. Jilka RL, Cohn DV: Role of phosphodiesterase in the parathormone-stimulated adenosive 3′5′ -monophosphate response in bone cell populations enriched in osteoclasts and osteoblasts. Endocrinology 109: 743–747, 1981.

    Article  PubMed  CAS  Google Scholar 

  12. Nelson RL, Bauer GE: Isolation of osteoclasts by velocity sedimentation at unit gravity. Calcif. Tiss. Res. 22: 303–313, 1977.

    Article  CAS  Google Scholar 

  13. Wong GL: Characterization of subpopulations of OC and OB bone cells obtained by sedimentation at unit gravity. Calcif. Tiss. Int. 34: 67–75, 1982.

    Article  CAS  Google Scholar 

  14. Wong GL, Cohn DV: Target cells for parathormone and calcitonin are different: Enrichment for each cell type by sequential digestion of mouse calvaria and selective adhesion to polymeric surfaces. Proc. Natl. Acad. Sci. USA 72: 3167–3171, 1975.

    Article  PubMed  CAS  Google Scholar 

  15. Puzas JE, Vignery A, Rasmussen H: Isolation of specific bone cell types by free-flow electrophoresis. Calcif. Tiss. Int. 27: 263–268, 1979.

    Article  CAS  Google Scholar 

  16. Schwartz ER: Cartilage cells and organ culture. In: Skeletal Research, An Experimental Approach, Simmons DJ, Kunin AS (eds). New York, Academic Press, 1979, p 61–80.

    Google Scholar 

  17. Rifas L, Vitto J, Memoli VA, Kuettner KE, Henry RW, Peck WA: Selective emergence of differentiated chondrocytes during serum-free culture of cells derived from fetal rat calvaria. J. Cell Biol. 92: 493–504, 1982.

    Article  PubMed  CAS  Google Scholar 

  18. Siyuki F, Takase T, Takigawa M, Uchida A, Shimora Y: Stimulation of the initial stage of endochondrial ossification: In vitro sequential culture of growth cartilage cells and bone marrow cells. Proc. Natl. Acad. Sci. USA 78: 2368–2372, 1981.

    Article  Google Scholar 

  19. Atkins D, Hunt NH, Ingleton PM, Martin TJ: Rat osteogenic sarcoma cells: Isolation and effects of hormones on the production of cyclic AMP and cyclic GMP. Endocrinology 101: 555–561, 1977.

    Article  PubMed  CAS  Google Scholar 

  20. Majeska RJ, Rodan SB, Rodan GA: Parathyroid hormone-responsive clonal cell lines from rat osteosarcoma. Endocrinology 107: 1494–1503, 1980.

    Article  PubMed  CAS  Google Scholar 

  21. Aubin JE, Heerche JNM, Merrilees MJ, Sodek J: Isolation of bone cell clones with differences in growth, hormone responses, and extracellular matrix production. J. Cell Biol. 92: 452–461, 1982.

    Article  PubMed  CAS  Google Scholar 

  22. Hefley T, Stern P: Isolation of osteoclasts from cultured, fetal rat long bones. In: Hormonal Control of Calcium Metabolism, Cohn DV, Talmage RV, Matthews JL (eds), Amsterdam, Excerpta Medica, 1981, p 405.

    Google Scholar 

  23. Testa NG, Allen TD, Lajtha LG, Onions D, Jarret O: Generation of osteoclasts in vitro. J. Cell Sci. 47: 127–137, 1981.

    PubMed  CAS  Google Scholar 

  24. Ko JS, Bernard GW: Osteoclast formation in vitro from bone marrow mononuclear cells in osteoclast-free bone. Am. J. Anat. 161: 415–425, 1981.

    Article  PubMed  CAS  Google Scholar 

  25. Kream BE, Jose M, Yamada S, DeLuca HF: A specific high-affinity binding macromolecule for 1,25-dihydroxyvitamin D3 in fetal bone. Science 197: 1086–1088, 1977.

    Article  PubMed  CAS  Google Scholar 

  26. Manolagas SC, Taylor CM, Anderson DC: Highly specific binding of 1,25-dihydroxycholecalciferols in bone cytosol. J. Endocrinol. 80: 35–39, 1979.

    Article  PubMed  CAS  Google Scholar 

  27. Chen TL, Hirst MA, Feldman D: A receptor-like binding macromolecule for 1,25-dihydroxycholecalciferol in cultured mouse bone cells. J. Biol. Checn. 254: 7491–7494, 1979.

    CAS  Google Scholar 

  28. Manolagas SC, Deftos LJ: Comparison of 1,25-, 25-, and 24,25- hydroxylated vitamin D3 binding in fetal rat calvariae and osteogenic sarcoma cells. Calcif. Tiss. Int. 33: 655–661, 1981.

    Article  CAS  Google Scholar 

  29. Corvol M, Ulmann A, Garabedian M: Specific nuclear uptake of 24,25- dihydroxycholecalciferol, a vitamin D3 metabolite biologically active in cartilage. FEBS Lett. 116: 273–276, 1980.

    Article  PubMed  CAS  Google Scholar 

  30. Somjen D, Soojen GJ, Weisman Y, Binderman I: Evidence for 24,25- dihydroxycholecalciferol receptors in long bone of newborn rats. Biochem. J. 204: 31–36, 1982.

    PubMed  CAS  Google Scholar 

  31. Turner RT, Puzas JE, Forte MD, Lester GE, Gray TK, Howard GA, Baylink IJ: In vitro synthesis of 1,25-dihydroxycholecalciferol and 24,25- dihydroxycholecalciferol by isolated calvarial cells. Proc. Natl. Acad. Sci. USA 77: 5720–5724, 1980.

    Article  PubMed  CAS  Google Scholar 

  32. Howard GA, Turner RT, Sherrard DJ, Baylink DJ: Human bone cells in culture metabolize 25-hydroxyvitamin D3 to 1,25-dihydroxyvitamin D3 and 24,25-dihydroxyvitamin D3. J. Biol. Chem. 256: 7738–7740, 1981.

    PubMed  CAS  Google Scholar 

  33. Corvol MT, Dumontier MF, Garabedian M, Rappaport R: Vitamin D and cartilage. II. Biological activity of 25-hydroxycholecalciferol and 24,25- and 1,25-dihydroxycholecalciferols on cultured growth plate chondrocytes. Endocrinology 102: 1269–1274, 1978.

    Article  CAS  Google Scholar 

  34. Stern PH: A monolog on analogs: In vitro effects of vitamin D metabolites and consideration of the mineralization question. Calcif. Tiss. Int. 33: 1–4, 1981.

    Article  CAS  Google Scholar 

  35. Raisz LG, Trummel CL, Holick MF, DeLuca HF: 1,25-Dihydroxhcholecalciferol, a potent stimulator of bone resorption in culture. Science 175: 768–769, 1972.

    Article  PubMed  CAS  Google Scholar 

  36. Holtrop ME, Raisz LG: Comparison of the effects of 1,25-dihydroxycholecalciferol, prostaglandin E2 and osteoclast-activating factor with parathyroid hormone on the ultrastructure of osteoclasts in cultured long bones of fetal rats. Calcif. Tiss. Int. 29: 201–205, 1979.

    Article  CAS  Google Scholar 

  37. Wong GL, Luben RA, Cohn DV: 1,25-Dihydroxycholecalciferol and parathormone: Effects on isolated osteoclast-like and osteoblast-like cells. Science 197: 663–665, 1977.

    Article  PubMed  CAS  Google Scholar 

  38. Luben RA, Mohler MA, Rosen D: Evaluation of a new method for studying resorption by isolated bone cells. In: Vitamin D, Biochemical, Chemical and Clinical Aspects Related to Calcium Metabolism, Norman AW, et al. (eds), Berlin, Walter de Gruyter, 1977, p 395–397.

    Google Scholar 

  39. Holtrop ME, Cox KA, Clark MB, Holick MF, Anast CS: 1,25-Dihydroxycholecalciferol stimulates osteoclasts in rat bones in the absence of parathyroid hormone. Endocrinology 108: 2293–2301, 1981.

    Article  PubMed  CAS  Google Scholar 

  40. Rodan GA, Martin TJ: Role of osteoblasts in hormonal control of bone resorption - a hypothesis. Calcif. Tiss. Int. 33: 349–352, 1981.

    Article  CAS  Google Scholar 

  41. Dietrich JW, Canalis EM, Maina DM, Raisz LG: Hormonal control of bone collagen synthesis in vitro: Effects of parathyroid hormone and calcitonin. Endocrinology 98: 943–949, 1976.

    Article  PubMed  CAS  Google Scholar 

  42. Bringhurst FR, Potts JT Jr: Effects of vitamin D metabolites and analogs on bone collagen synthesis in vitro. Calcif. Tiss. Int. 34: 103–110, 1982.

    Article  CAS  Google Scholar 

  43. Kream BE, Rowe DW: Regulation of collagen synthesis in fetal rat calvaria by 1,25-dihydroxyvitamin D3. Calcif. Tiss. Int. 33: 337, 1981.

    Google Scholar 

  44. Price PA, Baukal SA: 1,25-Dihydroxyvitamin D3 increases synthesis of the vitamin K-dependent bone protein by osteosarcoma cells. J.

    Google Scholar 

  45. Bornstein P: The biosynthesis of collagen. Ann. Rev. Biochem. 43: 567–603, 1974.

    Article  PubMed  CAS  Google Scholar 

  46. Bourne GH: Phosphatase and calcification. In: The Biochemistry and Physiology of Bone, 2nd Edition, Vol. 11, Physiology and Pathology, Bourne GH (ed), New York, Acadcmic Press, 1972, p 79–120.

    Google Scholar 

  47. Manolagas SC, Burton DW, Deftos LJ: 1,25-Dihydroxyvitanin D3 stimulates the alkaline phosphatase activity of osteoblast-like cells. J. Biol. Chen. 256: 7115–7117, 1981.

    CAS  Google Scholar 

  48. Majeska RJ, Rodan GA: The effect of 1,25(OH) 2D3 on alkaline phosphatase in osteoblastic osteosarcoma cells. J. Biol. Chem. 257: 3362–3365, 1982.

    PubMed  CAS  Google Scholar 

  49. Endo H, Kiyoki M, Kawashima K, Noruchi T, Hoshimoto Y: Vitamin D3 metabolites and PTH synergistically stimulate bone formation of chick embryonic femur in vitro. Nature 286: 262–264, 1980.

    Article  PubMed  CAS  Google Scholar 

  50. Henry HL, Norman AW: Vitamin D: Two dihydroxylated metabolites are required for normal chicken egg hatchability. Science 201: 835–837, 1978.

    Article  PubMed  CAS  Google Scholar 

  51. Miller SC, Halloran BP, DeLuca HF, Yamada S, Takayama H, Jee WSS: Biological activity of 24,24-difluoro-25-hydroxyvitamin D3. Calcif. Tiss. Int. 33: 489–497, 1981.

    Article  CAS  Google Scholar 

  52. Miller SC, Halloran BP, DeLuca HF, Yamada S, Takayama H, Jee WSS: Biological activity of 24,24-difluoro-25-hydroxyvitamin D3. Calcif. Tiss. Int. 33: 489–497, 1981.

    Article  CAS  Google Scholar 

  53. Kent CN, Jilka RL, Cohn DV: Homologous and heterologous control of bone cell adenosine 3′,5′-monophosphate response to hormones by parathormone, prostaglandin E2 calcitonin and 1,25-dihydroxycholecalciferol. Endocrinology 107: 1474–1481, 1980.

    Article  PubMed  CAS  Google Scholar 

  54. Hermann-Erlee MPM, Gaillard PJ: The effects of 1,25-dihydroxycholecalciferol on embryonic bone in vitro: A biochemical and histological study. Calcif. Tiss. Res. 25: 111–118, 1978.

    Article  Google Scholar 

  55. Kakuta S, Suda T, Sasaki S, Kimura N, Nagata N: Effects of parathyroid hormone on the accumulation of cyclic AMP in bone of vitamin D- deficient rats. Endocrinology 97: 1288–1293, 1975.

    Article  PubMed  CAS  Google Scholar 

  56. Marcus R, Orner FB, Brickman AS: Effects in vivo of vitamin D metabolites and 17β-estradiol on parathormone hormone-dependent formation of adenosine 3′,5′-monophosphate in rat bone. Endocrinology 107: 1593–1599, 1980.

    Article  PubMed  CAS  Google Scholar 

  57. Crowell JA Jr, Cooper CW, Toverud SV, Boass A: Influence of vitamin D on parathyroid hormone-induced adenosive 3′,5′-monophosphate production by bone cells isolated from rat calvariae. Endocrinology 109: 1715–1722, 1981.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Martinus Nijhoff Publishing, Boston/The Hague/Dordrecht/Lancaster

About this chapter

Cite this chapter

Jilka, R.L., Cohn, D.V. (1984). Effect of Vitamin D on Cultured Bone Cells. In: Kumar, R. (eds) Vitamin D. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2839-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2839-1_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9793-2

  • Online ISBN: 978-1-4613-2839-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics