Transglutaminase catalyzed incorporation of putrescine into surface proteins of mouse neuroblastoma cells

  • Kuang Yu Chen
Part of the Developments in Molecular and Cellular Biochemistry book series (DMCB, volume 4)


Transglutaminase, purified from guinea pig liver, was used to catalyze the incorporation of[14C]putrescine into exposed surface proteins of intact mouse neuroblastoma cells. This method specifically labeled two surface proteins (Mr = 92 000 and 76 000) in the N-18 mouse neuroblastoma cells and three surface proteins (Mr = 92 000, 76 000, and 72 000) in the NB-15 mouse neuroblastoma cells. In addition, transglutaminase also catalyzed cross-linking reactions of exposed surface proteins. In both the N-18 and NB-15 cells, differentiation was accompanied by a 2-fold increase of specific radioactivity incorporated into trichloroacetic acid insoluble cellular material, suggesting that the differentiated mouse neuroblastoma cells may possess greater amount of accessible peptide-bound glutaminyl residues on their surface than their malignant counterparts. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorographic method revealed that while the [14C]putrescine-labeled protein patterns of undifferentiated and differentiated mouse neuroblastoma cells were similar, the intensity of labeling of individual bands was specifically modulated by cell differentiation.


Surface Protein Mouse Neuroblastoma Cell Exposed Surface Protein Glycine Ethyl Ester Dibutyryl Adenosine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.





N6,O2′-Dibutyryl adenosine 3′:5′-cyclic monophosphate


3-isobutyl-1-methyl xanthine


sodium dodecyl sulfate-polyacrylamide gel electrophoresis


N-2-hydroxylethylpiperazine-N′-2-ethanesulfonic acid.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Folk, J. E., 1980. Ann. Rev. Biochem. 49: 517–531.PubMedCrossRefGoogle Scholar
  2. 2.
    Folk, J. E. and Finlayson, J. S., 1977. Adv. Protein Chem. 31: 1–133.PubMedCrossRefGoogle Scholar
  3. 3.
    Folk, J. E. and Cole, P. W., 1966. J. Biol. Chem. 241: 5518–5525.PubMedGoogle Scholar
  4. 4.
    Dutton, A. and Singer, S. J., 1975. Proc. Natl. Acad. Sci. USA 72: 2568–2571.PubMedCrossRefGoogle Scholar
  5. 5.
    Okumura, T. and Jamieson, G. A., 1976. J. Biol. Chem. 251: 5944–5949.Google Scholar
  6. 6.
    Clarke, D. D., Mycek, M. J., Neidle, A. and Waelsch, H., 1959. Arch. Biochem. Biophys. 790: 338–354.CrossRefGoogle Scholar
  7. 7.
    Cohen, S. S., 1971. Introduction to the Polyamines, pp. 1–179, Prentice-Hall, N.J.Google Scholar
  8. 8.
    Bachrach, U., 1973. Function of Naturally Occurring Polyamines, pp. I-211, Academic Press, New York.Google Scholar
  9. 9.
    Russell, D. H. and Durie, B. G. M. Polyamines as Biochemical Markers of Normal and Malignant Growth, pp. 1–178, Raven Press, N.Y.Google Scholar
  10. 10.
    Novogradsky, A., Quittner, S., Rubin, A. L. and Stenzel, K. H., 1978. Proc. Natl. Acad. Sci. USA 75: 1157–1161.CrossRefGoogle Scholar
  11. 11.
    Obinata, A. and Endo, H., 1979. J. Biol. Chem. 254: 8487–8490.PubMedGoogle Scholar
  12. 12.
    Davies, P. J. A., Davies, D. R., Levitzki, A., Maxfield, F. R., Milhaud, P., Willingham, M. C. and Pastan, I. H., 1980. Nature 283: 152–157.Google Scholar
  13. 13.
    Williams-Ashman, H. G., Beil, R. E., Wilson, J., Hawkins, M., Grayhack, J., Zunamon, A. and Weinstein, N. K., 1980. Adv. in Enzyme Regulation 18: 239–258.CrossRefGoogle Scholar
  14. 14.
    Williams-Ashman, H. G., Wilson, J., Beil, R. E. and Lorand, L., 1977. Biochem. Biophys. Res. Commun. 79: 1192–1198.PubMedCrossRefGoogle Scholar
  15. 15.
    Seale, T. W., Chan, W. Y., Shulka, J. and Rennert, O. M., 1979. Arch. Biochem. Biophys. 198: 164–174.PubMedCrossRefGoogle Scholar
  16. 16.
    Seale, T. W., Chan, W., Shukla, J. and Rennert, O., 1979. Clin. Chim. Acta 95: 461–472.PubMedCrossRefGoogle Scholar
  17. 17.
    Connellan, J. M., Chung, S. I., Whetzel, N. K., Bradley, L. M. and Folk, J. E., 1971. J. Biol. Chem. 246: 1093–1098.PubMedGoogle Scholar
  18. 18.
    Lorand, L., Campbell-Wilkes, L. K. and Cooperstein, L., 1972. Anal. Biochem. 50: 623–631.PubMedCrossRefGoogle Scholar
  19. 19.
    Chen, K. Y., Presepe, V., Parken, N. and Liu, A. Y-C., 1982. J. Cell. Physiol. 110: 285–290.PubMedCrossRefGoogle Scholar
  20. 20.
    Chen, K. Y. and Rinehart, C. A. Jr., 1981. Biochim. Biophys. Acta. 685: 61–70.Google Scholar
  21. 21.
    Chen, K. Y., Tsai, C. M. and Canellakis, E. S., 1975. Cancer Res. 35: 2403–2412.PubMedGoogle Scholar
  22. 22.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J., 1951. J. Biol. Chem. 193: 265–275.PubMedGoogle Scholar
  23. 23.
    Bonner, W. M. and Laskay, R. A., 1974. Eur. J. Biochem. 46: 83–88.PubMedCrossRefGoogle Scholar
  24. 24.
    Fairbanks, G., Steck, T. L. and Wallach, D. F. H., 1971. Biochemistry 10: 2606–2617.PubMedCrossRefGoogle Scholar
  25. 25.
    Prasad, K. N., 1975. Biol. Rev. 50: 129–265.PubMedCrossRefGoogle Scholar
  26. 26.
    Prasad, K. N. and Hsie, A. W., 1971. Nature (New Biology) 233: 141–142.Google Scholar
  27. 27.
    Littauer, W. Z., Giovanni, M. Y. and Glick, M. C., 1980. J. Biol. Chem. 255: 5448–5453.PubMedGoogle Scholar
  28. 28.
    Schrode, J. and Folk, J. E., 1978. J. Biol. Chem. 253: 4837–4840.PubMedGoogle Scholar
  29. 29.
    Folk, J. E., Park, M. H., Chung, S. I., Schrode, J., Lester, E. P. and Cooper, H. L., 1980. J. Biol. Chem. 255: 3695–3700.PubMedGoogle Scholar
  30. 30.
    Quash, G. A., Niveleau, A., Aupoix, M. and Greenland, 1976. Exp. Cell Res. 98: 253–261.PubMedCrossRefGoogle Scholar
  31. 31.
    Quash, G., Gresland, L., Delain, E. and Huppert, J., 1972. Exp. Cell Res. 75: 363–368.PubMedCrossRefGoogle Scholar

Copyright information

© Martinus Nijhoff Publishing, Boston 1984

Authors and Affiliations

  • Kuang Yu Chen
    • 1
  1. 1.Department of ChemistryRutgers-The State University of New JerseyNew BrunswickUSA

Personalised recommendations