Skip to main content

Is there a general paradigm of cyclic AMP action in eukaryotes?

  • Chapter
  • 107 Accesses

Part of the book series: Developments in Molecular and Cellular Biochemistry ((DMCB,volume 4))

Summary

The cyclic AMP control system in eukaryotes has been highly conserved evolutionarily in four of its central properties. Such conservation suggests conservation of the regulatory function of cyclic AMP. Conservation is seen in the properties of adenylate cyclase, cyclic AMP-dependent protein kinase and, among diverse lower eukaryotes, the control of endogenous cyclic AMP levels. A conserved regulatory response to cyclic AMP is the stimulation of glycolysis and inhibition of gluconeogenesis. The control of glycolysis and gluconeogenesis is proposed to be evidence of general pattern of cyclic AMP action in many lower and higher eukaryotic cells.

To whom requests for offprints should be addressed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jost JP, Rickenberg HV: Cyclic AMP. Annu Rev Biochem 40: 741–773, 1971.

    CAS  Google Scholar 

  2. Tomkins GM: The metabolic code. Science 189: 760–763, 1975.

    Article  PubMed  CAS  Google Scholar 

  3. Pall ML, Trevillyan JM, Hinman N: Deficient cyclic adenosine 3’,5’-monophosphate control in mutants of two genes of Neurospora crassa. Mol Cell Biol 1: 1–8, 1981.

    PubMed  CAS  Google Scholar 

  4. Matsumoto K, Uno I, Tohe A, Ishikawa T, Oshima Y: Cyclic AMP may not be involved in catabolite suppression in Saccharomyces cerevisiae:evidence from mutants capable of utilizing it as an adenine source. J. Bacteriol. 150: 277–285, 1982.

    PubMed  CAS  Google Scholar 

  5. Takai Y, Sakai K, Morishita Y, Yamamura H, Nishizuka Y: Functional similarities of yeast and mammalian adenosine 3’,5’-monophosphate dependent protein kinase. Biochem Biophys Res Commun 59: 646–652, 1974.

    Article  PubMed  CAS  Google Scholar 

  6. Trevillyan JM, Pall ML: Isolation and properties of a cyclic AMP-binding protein from Neurospora. Evidence for its role as the regulatory subunit of cyclic AMP-dependent protein kinase. J Biol Chem 257: 3978–3986, 1982.

    PubMed  CAS  Google Scholar 

  7. Hixson CS, Krebs EG: Characterization of a cyclic AMP binding protein from baker’s yeast:identification as a regulatory subunit of cyclic AMP-dependent protein kinase. J Biol Chem 255: 2137–2145, 1980.

    PubMed  CAS  Google Scholar 

  8. Takai Y, Yamamura H, Nishizuka Y: Adenosine 3’:5’-monophosphate-dependent protein kinase from yeast. J Biol Chem 249: 530–535, 1974.

    PubMed  CAS  Google Scholar 

  9. Sy J, Roselle M: Phosphorylation of the regulatory subunit of yeast cAMP-dependent protein kinase. Proc Natl Acad Sci USA 79: 2874–2877, 1982.

    Article  PubMed  CAS  Google Scholar 

  10. Leichtling BH, Spitz E, Rickenberg HV: A cAMP-binding protein from Dictyostelium discoideum regulates mammalian protein kinase. Biochem Biophys Res Commun 100: 515–522.

    Google Scholar 

  11. Rosenberg GB, Pall ML: Characterization of an ATP-Mg2+ dependent guanine nucleotide-stimulated adenylate cyclase from Neurospora crassa. Arch Biochem Biophys 221: 243–253, 1983.

    Article  PubMed  CAS  Google Scholar 

  12. Rosenberg GB, Pall ML: Reconstitution of adenylate cyclase in Neurospora from two components of the enzyme. Arch Biochem Biophys 221: 254–260, 1983.

    Article  PubMed  CAS  Google Scholar 

  13. Casperson GF, Walker N, Brasier AR, Bourne HR: A guanine nucleotide-sensitive adenylate cyclase in the yeast Saccharomyces cerevisiae. J Biol Chem 258: 7911–7914, 1983.

    PubMed  CAS  Google Scholar 

  14. Leichtling BH, Coffman DS, Yaeger ES, Rickenberg HV, al-Jumaliy W, Haley BE: Occurrence of the adenylate cyclase ‘G protein’ in membranes of Dictyostelium discoideum. Biochem Biophys Res Commun 102: 1187–1195, 1981.

    Article  PubMed  CAS  Google Scholar 

  15. Ross EM, Gilman AG: Biochemical properties of hormone-sensitive adenylate cyclase. Ann Rev Biochem 49: 533–564, 1980.

    Article  PubMed  CAS  Google Scholar 

  16. Flawia MM, Kornblihtt AR, Reis JR, Torruella M, Torres HN: Reconstitution of a hormone-sensitive adenylate cyclase with membrane extracts from Neurospora and avian erythrocytes. J Biol Chem 258: 8255–8259, 1983.

    PubMed  CAS  Google Scholar 

  17. Trevillyan JM, Pall ML: Control of cyclic adenosine 3’,5’monophosphate levels by depolarizing agents in fungi. J Bacteriol 138: 397–403, 1979.

    PubMed  CAS  Google Scholar 

  18. Uno I, Ishikawa T: Control of adenosine 3’,5’-monophosphate level and protein phosphorylation by depolarizing agents in Coprinus macrorhizus. Biochim Biophys Acta 672: 108–113, 1981.

    PubMed  CAS  Google Scholar 

  19. Jaynes PK, McDonough JP, Mahler HR: Properties and possible functions of the adenylate cyclase in plasma membranes of Saccharomyces cerevisiae. Molec Cell Biol 2: 1481–1491, 1982.

    PubMed  CAS  Google Scholar 

  20. Fitch WM, Margoliash E: Construction of phylogenetic trees. Science 155: 279–284, 1967.

    Article  PubMed  CAS  Google Scholar 

  21. Pall M L: Adenosine 3’,5’-phosphate in fungi. Microbiol Rev 45: 462–480, 1981.

    PubMed  CAS  Google Scholar 

  22. Tellez-Inon MT, Torres HN: Interconvertible forms of glycogen phosphorylase in Neurospora crassa. Proc Natl Acad Sci USA 66: 459–463, 1970.

    Article  PubMed  CAS  Google Scholar 

  23. Tellez-Inon MT, Torres HN: Regulation of glycogen phosphorylase a phosphatase in Neurospora crassa. Biochim Biophys Acta 297: 399–412, 1973.

    Google Scholar 

  24. Uno I, Ishikawa T: Effect of cyclic AMP on glycogen phosphorylation in Coprinus macrorhizus. Biochim Biophys Acta 452: 112–120, 1976.

    PubMed  CAS  Google Scholar 

  25. Uno I, Ishikawa T: Effect of cyclic AMP on glycogen synthetase (EC-2.4.1.11) in Coprinus macrorhizus. J Gen Appl Microbiol 24: 193–197, 1978.

    Article  CAS  Google Scholar 

  26. Mishra C: Evidence for the occurrence of glycogen synthase phosphatases and kinases in yeast. FEMS Microbiol Lett 18: 25–29, 1983.

    Article  CAS  Google Scholar 

  27. Pohlig G: Wingerden-Drissen R, Becker JU: Characterization of phosphorylase kinase activities in yeast. Biochem Biophys Res Commun 714: 331–338, 1983.

    Article  Google Scholar 

  28. Ortiz CH, Maia JCC, Tenan MN, Braz-Padrao GR, Mattoon JR, Panek AD: Regulation of yeast trehalase by a monocyclic, cyclic AMP-dependent phosphorylation-dephosphorylation cascade system. J Bacteriol 153: 644–651, 1983.

    PubMed  CAS  Google Scholar 

  29. Van der Platt JV, Van Solingen P: Cyclic 3’, 5’ adenosine monophosphate stimulates trehalose degradation in baker’s yeast. Biochem Biophys Res Commun 56: 580–587, 1974.

    Article  Google Scholar 

  30. Van Solingen P, Van der Platt JV: Partial purification of the protein system controlling the breakdown of trehalose in baker’s yeast. Biochem Biophys Res Commun 62: 553–560, 1975.

    Article  PubMed  Google Scholar 

  31. Wiemkin A, Schellenberg M: Does a cyclic AMP-dependent phosphorylation initiate the transfer of trehalase from the cytosol into the vacuoles in Saccharomyces cerevisiae? FEBS Lett 150: 329–331, 1982.

    Article  Google Scholar 

  32. Vinuela E, Salas M L, Salas M, Sols A: Two interconvertable forms of yeast phosphofructokinase with different sensitivity to end product inhibition. Biochem. Biophys Res Commun 15: 243–249, 1964.

    Article  PubMed  CAS  Google Scholar 

  33. Cancedo JM, Mazon MJ, Cancedo C: Fructose 2,6-bisphosphate activates the cAMP-dependent phosphorylation of yeast fructose-1,6-bisphosphatase activity in vitro. J Biol Chem 258: 5998–5999, 1983.

    Google Scholar 

  34. Gangedo JM, Mazon MJ, Gangedo C: Kinetic differences between two intraconvertible forms of fructose 1,6-bisphosphatase from Saccharomyces cerevisiae. Arch Biochem Biophys 218: 478–482, 1982.

    Article  Google Scholar 

  35. Londesborough J: Cyclic nucleotide-dependent inactivation of yeast fructose 1,6-bisphosphatase by ATP. FEBS Lett 144: 269–272, 1982.

    Article  PubMed  CAS  Google Scholar 

  36. Tortora P, Burlini N, Leoni F: Guerritore, A. Dependence on cyclic AMP of glucose-induced inactivation of yeast gluconeogenic enzymes. FEBS Lett 155: 39–42, 1983.

    Article  PubMed  CAS  Google Scholar 

  37. Toyoda Y, Sy J: Catabolite inactivation of yeast fructose 1,6-bisphosphatase (abstract). Fed Proc 42: 2050, 1983.

    Google Scholar 

  38. Wold WS M, Suzuki I: Demonstration in Aspergillus niger of adenyl cyclase, a cyclic adenosine 3’,5’-monophosphate binding protein and studies on intracellular and extracellular phosphodiesterases. Can J Microbiol 20: 1567–1576, 1974.

    Article  PubMed  CAS  Google Scholar 

  39. Alobaidi ZS, Berry DR: cAMP concentration, morphological differentiation and citric acid production in Aspergillus niger. Biotechnol Lett 2: 5–10, 1980.

    Article  CAS  Google Scholar 

  40. Turian G, Bianchi DE: Conidiation in Neurospora. Bot Rev 38: 119–157, 1972.

    Article  Google Scholar 

  41. Terenzi HF, Flawia MM, Torres HN: A Neurospora crassa morphological mutant showing reduced adenylate cyclase activity. Biochem Biophys Res Commun 58: 990–996, 1974.

    Article  PubMed  CAS  Google Scholar 

  42. Dietzler DN, Leckie MP, Magnani JL, Sughrue MJ, Bergstein PE, Sternheim WL: Contribution of cyclic adenosine 3’:5’-monophosphate to the regulation of bacterial glycogen synthesis in vivo. Effect of carbon source and cyclic adnosine 3’:5’-monophosphate on the quantitative relationship between rate of glycogen synthesis and the cellular concentrations of glucose 6-phosphate and fructose 1,6-diphosphate in Escherichia coli. J Biol Chem 254: 8308–8317, 1979.

    PubMed  CAS  Google Scholar 

  43. Leckie MP, Ng RH, Porter SE, Compton DR, Dietzler DN: Regulation of bacterial glycogen synthesis. Stimulation of glycogen synthesis by endogenous and exogenous cyclic adenosine 3’:5’-monophosphate in Escherichia coli and the requirement for a functional crp gene. J Biol Chem 258: 3813–3824, 1983.

    PubMed  CAS  Google Scholar 

  44. Robison GA, Butcher RW, Sutherland EW: Cyclic AMP. Ann Rev Biochem 37: 149–174, 1968.

    CAS  Google Scholar 

  45. Nimmo HG, Cohen P: Hormonal control of protein phosphorylation. Adv Cyclic Nucleotide Res 8: 145–266, 1977.

    PubMed  CAS  Google Scholar 

  46. Hofer HW, Allen BL, Kaeni MR, Harris BG: Phosphofructokinase from Ascaris suum. The effect of phosphorylation on activity near physiological conditions. J Biol Chem 257: 3807–3810, 1982.

    PubMed  CAS  Google Scholar 

  47. Mansour TE, Mansour JM: Effects of sertonin (5-hydroxytryptamine) and adenosine 3’:5’-phosphate on phosphofructokinase from the liver fluke Fasciola hepatica. J Biol Chem 237: 629–634, 1962.

    PubMed  CAS  Google Scholar 

  48. Dumont JE: The action of thyrotropin on thyroid metabolism. Vitamins Horm 29: 287–412, 1971.

    Article  CAS  Google Scholar 

  49. Hillensjo T, Ekholm C, Ahrem K: Role of cyclic AMP in oocyte maturation and glycolysis in the pre-ovulatory rat follicle. Acta Endocrinol 87: 377–388, 1978.

    PubMed  CAS  Google Scholar 

  50. Mansour TE: Studies of heart phosphofructokinase purification, inhibition and activation. J Biol Chem 238: 2285–2292, 1963.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Martinus Nijhoff Publishing, Boston

About this chapter

Cite this chapter

Pall, M.L. (1984). Is there a general paradigm of cyclic AMP action in eukaryotes?. In: Najjar, V.A., Lorand, L. (eds) Transglutaminase. Developments in Molecular and Cellular Biochemistry, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2829-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2829-2_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9788-8

  • Online ISBN: 978-1-4613-2829-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics