Biological maturation and β-adrenergic effectors: development of β-adrenergic receptors in rabbit heart

  • William Schumacher
  • Bernard L. Mirkin
  • J. R. Sheppard
Part of the Developments in Molecular and Cellular Biochemistry book series (DMCB, volume 4)


The β-adrenergic receptor, transduction processes and catalytic activity of the adenylate cyclase enzyme complex have been investigated in rabbit heart at different stages of biological maturation. The binding of [3H]-dihydroalprenolol to a washed membrane preparation isolated from rabbit ventricular muscle was used to characterize β-adrenergic receptors. Significant age-related differences were noted in β-receptor affinity (Kd) and density (RD) of neonatal and adult animals; the adult Kd was 3.7-fold greater and the RD 2-fold higher than the neonates. No significant differences in these parameters were detected among the 27-day old fetus and the 1- and 7-day old neonates. Age-dependent differences in agonist isoproterenol affinity for the receptor were not observed in contrast to the significant changes in antagonist (DHA) affinity.

Age-related changes in receptor affinity were also quantitated by determining the inhibitory potency of alprenolol on isoproterenol stimulated adenylate cyclase enzyme activity. A decreased affinity of the β-adrenergic receptor for alprenolol in the adult heart was indicated by a 3.7-fold greater Ki for the adult than the 1-day old neonate. Ontogenic variations in the coupling efficiency between the receptor and catalytic components of the adenylate cyclase complex were also evaluated. The Kd of the β-adrenergic receptor for isoproterenol and the EC50 for adenylate cyclase stimulation were determined under similar conditions. The corresponding coupling index (Kd/ EC50) was found to be 2.4-fold greater in the 1-day old neonate than adult, suggesting that for a given percentage increase in adenylate cyclase activity, a lower percentage of β-adrenergic receptor sites need be occupied in the neonate. These data extend previous studies (29) and indicate all components of the rabbit heart adenylate cyclase enzyme complex (i.e., the β-adrenergic receptor, the GTP-dependent transduction event, and the catalytic subunit) exhibit significant developmental changes.


Adenylate Cyclase Receptor Density Adenylate Cyclase Activity Rabbit Heart Scatchard Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alexander, W. R., Williams, L. T. and Lefkowitz, R. J., 1975. Proc. Natl. Acad. Sci. U.S.A. 72: 1564–1568.PubMedCrossRefGoogle Scholar
  2. 2.
    Aurback, G. P., Fedak, S. A., Woodward, C. J., Palmer, J. S., Hauser, D. and Troxler, F., 1974. Science 186: 1223–1224.CrossRefGoogle Scholar
  3. 3.
    Baker, S. D. and Potter, L. T., 1980. Br. J. Pharmacol. 68: 65–70.PubMedGoogle Scholar
  4. 4.
    Brown, B. L., Albano, J. D. M., Ekins, R. P. and Sgherzi, A. M., 1971. Biochem. J. 121: 561–562.PubMedGoogle Scholar
  5. 5.
    Chen, F. C. M., Yamamura, H. I. and Roeske, W. R., 1979. Eur. J. Pharmacol. 58: 255–264.PubMedCrossRefGoogle Scholar
  6. 6.
    Ciaraldi, T. and Marinetti, G. V., 1977. Biochem. Biophys. Res. Commun. 74: 984–991.PubMedCrossRefGoogle Scholar
  7. 7.
    Claycomb, W. C., 1976. J. Biol. Chem. 251: 6082–6089.PubMedGoogle Scholar
  8. 8.
    Coleman, A. J., Paterson, D. S. and Somerville, A. R., 1979. Biochem. Pharmacol. 128: 1011–1013.CrossRefGoogle Scholar
  9. 9.
    Coleman, A. J. and Somerville, A. R., 1977. Br. J. Pharmacol. 59: 83–93.PubMedGoogle Scholar
  10. 10.
    Friedman, W. F., Pool, P. E., Jacobowitz, D., Seagren, S. C. and Braunwald, E., 1968. Circ. Res. 23: 25–32.PubMedGoogle Scholar
  11. 11.
    Glaubiger, G., Tsai, B. S. and Lefkowitz, R. J., 1978. Nature 273: 240–242.PubMedCrossRefGoogle Scholar
  12. 12.
    Green, T. D., O’Dea, R. F. and Mirkin, B. L., 1979. Ann. Rev. Pharmacol. Toxicol. 19: 285–322.CrossRefGoogle Scholar
  13. 13.
    Howlett, A. C., VanArsdale, P. M. and Gilman, A. G., 1978. Mol. Pharmacol. 14: 531–539.PubMedGoogle Scholar
  14. 14.
    Kaumann, A. J. and Birnbaumer, L., 1973. Acta Phys. Lat. Amer. 23: 619–620.Google Scholar
  15. 15.
    Krall, J. F., Connelly, M. and Tuck, M. L., 1980. J. Pharmacol. Exp. Ther. 214: 554–560.PubMedGoogle Scholar
  16. 16.
    Krawietz, W., Poppert, D., Erdmann, E., Glossmann, H., Struck, C. J. and Konrad, C., 1976. Naunyn Schmiedeberg Arch. Pharmacol. 295: 215–224.CrossRefGoogle Scholar
  17. 17.
    Krawietz, W., Weinsteiger, M., Pruchniewski, M. and Erdmann, E., 1979. Biochem. Pharmacol. 28: 2999–3007.PubMedCrossRefGoogle Scholar
  18. 18.
    Limas, C. and Limas, C. J., 1978. Biochem. Biophys. Res. Commun. 83: 710–714.PubMedCrossRefGoogle Scholar
  19. 19.
    Lowry, O. H., Rosebrough, W. J. and Randall, R. J., 1951. J. Biol. Chem. 193: 265–289.PubMedGoogle Scholar
  20. 20.
    Lucas and Bockaert, J., 1977. Mol. Pharmacol. 13: 314–329. 314–329.PubMedGoogle Scholar
  21. 21.
    Maguire, M. E., Ross, E. M. and Gilman, A. G., 1977. Adv. Cyclic Nucleotide Res. 8: 1–74.PubMedGoogle Scholar
  22. 22.
    Mayer, S. E., 1972. J. Pharmacol. Exp. Ther. 181: 116–125.PubMedGoogle Scholar
  23. 23.
    Mukherjee, C., Caron, M. G. and Coverstone, M., 1975. J. Biol. Chem. 250: 4869–4876.PubMedGoogle Scholar
  24. 24.
    Pappano, A. J., 1977. Pharmacol. Rev. 29: 3–33.PubMedGoogle Scholar
  25. 25.
    Roffi, J. and Motelica-Heino, I., 1975. Experientia (Basel) 31: 194–195.CrossRefGoogle Scholar
  26. 26.
    Ross, E. M. and Gilman, A. G., 1977. Proc. Natl. Acad. Sci. U.S.A. 74: 3715–3719.PubMedCrossRefGoogle Scholar
  27. 27.
    Scatchard, G., 1949. Ann. N.Y. Acad. Sci. 51: 660–672.CrossRefGoogle Scholar
  28. 28.
    Schild, H. O., 1947. J. Pharmacol. 2: 189–206.Google Scholar
  29. 29.
    Schumacher, W., Sheppard, J. R. and Mirkin, B. L., 1982. J. Pharmacol. Exp. Ther. 223: 587–593.PubMedGoogle Scholar
  30. 30.
    Slotkin, T. A., Smith, P. G., Lau, C. and Bareis, D. L., 1980. In: Biogenic Amines in Development (Parves, S. and Parves, H. eds.), Elsevier, North Holland, Amsterdam.Google Scholar
  31. 31.
    Snyder, F. F. and Drummond, G. I., 1978. Arch. Biochem. Biophys. 185: 116–125.PubMedCrossRefGoogle Scholar
  32. 32.
    W hitsett, J. A. and Darovec-Beckerman, L., 1981. Ped. Res. 15: 1363–1369.Google Scholar
  33. 33.
    Williams, L. T. and Lefkowitz, R. J., 1977. J. Biol. Chem. 252: 2787–2789.PubMedGoogle Scholar
  34. 34.
    Winek, R. and Bhalla, R., 1979. Biochem. Biophys. Res. Commun 91: 200–206.PubMedCrossRefGoogle Scholar
  35. 35.
    Yamada, S., Yamamura, H. I. and Roeske, W. R., 1980. Mol. Pharmacol. 18: 185–192.PubMedGoogle Scholar

Copyright information

© Martinus Nijhoff Publishing, Boston 1984

Authors and Affiliations

  • William Schumacher
    • 1
  • Bernard L. Mirkin
    • 1
  • J. R. Sheppard
    • 1
    • 2
  1. 1.Division of Clinical Pharmacology, Departments of Pharmacology and Pediatrics, Medical School, Department of Genetics and Cell Biology, Dight Institute for Human GeneticsUniversity of MinnesotaMinneapolisUSA
  2. 2.Dight Institute for Human GeneticsMinneapolisUSA

Personalised recommendations