The endothelial cytoskeleton

  • Stephen H. Blose
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 27)

Abstract

Endothelial cells occupy a unique position in the body: they are the only cells that form an interface between a fluid moving under pressure — the blood — and a solid substrate — the vessel wall. As the vanguard of the vessel wall, the endothelial cells must work in part to maintain a smooth clot-free surface. To do this, the cells must remain attached to the vessel wall, maintain a flat epithelioid geometry to prevent turbulence, and be able to migrate and reproduce to cover any void that might occur in the endothelial lining of the blood vessel. It is thought that an intracellular skeleton or cytoskeleton (18, 45) is intimately involved in these functions as well as maintaining the order of the cytoplasm. Since the late 1960’s, there has been an explosive understanding of the biology of the cytoskeleton in nonmuscle cells. Many of the constituent proteins of the cytoskeleton have been identified and implicated in functions such as cell motility, intracellular transport, cell attachment, cell shape, and intracellular organellar movement — to name a few.

Keywords

Permeability Serotonin Neuropathy Polypeptide Histamine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albrecht-Buehler, G. 1979. Navigation of non-neuronal cells. In: The Role of Intercellular Signals: Navigation, Encounter, Outcome. Nicholls, J.G. ed. Dahlem Konferenzen, Berlin, pp. 75–96.Google Scholar
  2. 2.
    Albrecht-Buehler, G. and Bushneil, A. 1979. The orientation of centrioles in migrating 3T3 cells. Exp. Cell Res. 120: 111–118.PubMedCrossRefGoogle Scholar
  3. 3.
    Allen, R.D. 1975. Evidence for firm linkages between microtubules and membrane-bound vesicles. J. Cell Biol. 64: 497–503.PubMedCrossRefGoogle Scholar
  4. 4.
    Ashton, F.T., Somlyo, A.V. and Somlyo, A.P. 1975. The contractile apparatus of vascular smooth muscle: intermediate high voltage stereo electron microscopy. J. Mol. Biol. 98: 17–29.PubMedCrossRefGoogle Scholar
  5. 5.
    Asmussen, I. and Kjeldsen, K. 1975. Intimai ultrastructure of human umbilical arteries. Circ. Res. 36: 579–589.PubMedGoogle Scholar
  6. 6.
    Ausprunk, D.H. and Berman, H.J. 1978. Spreading of vascular endothelial cells in culture: spatial reorganization of cytoplasmic fibers and organelles. Tiss. Cel 10: 707–724.CrossRefGoogle Scholar
  7. 7.
    Becker, C.G., Hardy, A.M. and Dubin, T. 1975. Contractile and relaxing proteins of smooth muscle, endothelial cells and platelets. Thrombosis et Diathesis Haemorrhagica, Supp. 60: 25–34.Google Scholar
  8. 8.
    Becker, C.G. and Nachman, R.L. 1973. Contractile proteins of endothelial cells, platelets, and smooth musle. Am. J. Pathol. 71: 1–22.PubMedGoogle Scholar
  9. 9.
    Blose, S.H. 1981. The distribution of 10nm filaments and microtubules in endothelial cells during mitosis: doublelabel immunofluorescence study. Cell Motility 1: 417–431.CrossRefGoogle Scholar
  10. 10.
    Blose, S.H. 1980. Functions of 10nm filaments in vascular endothelial cells. In: Biology of the Vascular Endothelial Cell. Blose, S., Jaffe, E. and Gospodarowicz, D. eds. Cold Spring Harbor Laboratory, New York, p. 1.Google Scholar
  11. 11.
    Blose, S.H. 1979. Ten-nanometer filaments and mitosis: maintenance of structural continuity in dividing endothelial cells. Proc. Natl. Acad. Sci. USA 76: 3372–3376.PubMedCrossRefGoogle Scholar
  12. 12.
    Blose, S.H. 1976. Contractile proteins and cytoplasmic filaments in cloned venous endothelial cells. Fed. Proc. 35: 154.Google Scholar
  13. 13.
    Blose, S.H. and Chacko, S. 1975. In vitro behavior of guinea pig arterial and venous endothelial cells. Develop. Growth Differ. 17: 153–165.CrossRefGoogle Scholar
  14. 14.
    Blose, S.H. and Chacko, S. 1976. Ring of intermediate (100 Å) filament bundles in the perinuclear region of vascular endothelial cells: their mobilization by colcemid and mitosis. J. Cell Biol. 70: 459–466.PubMedCrossRefGoogle Scholar
  15. 15.
    Blose, S.H. and Meltzer, D.I. 1981. Visualization of the lOnm filament-vimentin rings in vascular endothelial cells in situ: close resemblance to vimentin cytoskeletons found in monolayers in vitro. Exp. Cell Res. 135: 299–309.PubMedCrossRefGoogle Scholar
  16. 16.
    Blose, S.H., Shelanski, M.L. and Chacko, S. 1977. Localization of bovine brain filament antibody on intermediate (100Å) filaments in guinea pig vascular endothelial cells and chick cardiac muscle cells. Proc. Natl. Acad. Sci. USA 74: 662–665.PubMedCrossRefGoogle Scholar
  17. 17.
    Brinkley, B.R., Fistel, S.H., Marcum, J.M. and Pardue, R.L. 1980. Microtubules in cultured cells: indirect immunofluorescent staining with tubulin antibody. Int. Rev. Cytol. 63: 59–95.PubMedCrossRefGoogle Scholar
  18. 18.
    Brown, S., Levinson, W. and Spudich, A. 1976. Cytoskeletal elements of chick embryo fibroblasts revealed by detergent extraction. J. Supramolec. Struct. 5: 119–130.CrossRefGoogle Scholar
  19. 19.
    Buckley, I.K. and Porter, K.R. 1967. Cytoplasmic fibrils in living cultured cells. A light and electron microscope study. Protoplasma 64: 349–380.PubMedCrossRefGoogle Scholar
  20. 20.
    Burridge, K. and Feramisco, J.R. 1980. Microinjection and localization of a 130K protein in living fibroblasts: a relationship to actin and fibronectin. Cell 19: 587–595.PubMedCrossRefGoogle Scholar
  21. 21.
    Campbell, G.R., Chamley-Campbell, J., Groschel-Stewart, U., Small, J.V. and Anderson, P. 1979. Antibody staining of 10nm (100Å) filaments in cultured smooth, cardiac, and skeletal muscle cells. J. Cell Sci. 37: 303–322.PubMedGoogle Scholar
  22. 22.
    Chamley-Campbell, J., Campbell, G.R., Groschel-Stewart, U. and Burnstock, G. 1977. FITC-labelled antibody staining of tropomyosin-containing fibrils in smooth, cardiac, and skeletal muscle cells, prefusion myoblasts, fibroblasts, endothelial cells and 3T3 cells in culture. Cell Tiss. Res. 183: 153–166.CrossRefGoogle Scholar
  23. 23.
    Chamley-Campbell, J., Campbell, G.R. and Ross, R. 1979. The smooth muscle cell in culture. Physio. Rev. 59: 1–61.Google Scholar
  24. 24.
    Chamley, J.H., Groshel-Stewart, U., Campbell, G.R. and Burnstock, G. 1977. Distinction between smooth muscle, fibroblasts, and endothelial cells in culture by the use of fluoresceinated antibodies against smooth muscle actin. Cell Tiss. Res. 177: 445–457.Google Scholar
  25. 25.
    DeBruyn, P.P.H. and Cho, Y. 1974. Contractile structures in endothelial cells of splenic sinusoids. J. Ultrastruct. Res. 49: 24–33.CrossRefGoogle Scholar
  26. 26.
    Douvas, A.S., Harrington, C.A. and Bonner, J. 1975. Major non-histone proteins of rat liver chromatin: preliminary identification of myosin, actin, tubulin, and tropomyosin. Proc. Natl. Acad. Sci. USA 72: 3902–3906.PubMedCrossRefGoogle Scholar
  27. 27.
    Dustin, P. 1978. Microtubules. Springer-Verlag, New York.Google Scholar
  28. 28.
    Eriksson, A. and Thorneil, L.-E. 1979. Intermediate (skeletin) filaments in heart purkinje fibers. J. Cell Biol. 80: 231–247.PubMedCrossRefGoogle Scholar
  29. 29.
    Feramisco, J.R. and Blose, S.H. 1980. Distribution of fluorescently labeled alpha-actinin in living and fixed fibroblasts. J. Cell Biol. 86: 608–615.PubMedCrossRefGoogle Scholar
  30. 30.
    Folkman, J. 1976. The vascularization of tumors. Sci. Amer. 234 (5): 59–73.CrossRefGoogle Scholar
  31. 31.
    Folkman, J. and Haudenschild, C. 1980. Angiogenesis in vitro. Nature 288: 551–556.PubMedCrossRefGoogle Scholar
  32. 32.
    Frank, R.M., Weidemann, P. and Fellinger, E. 1977. Ultrastructure of lymphatic capillaries in the human dental pulp. Cell Tiss. Res. 178: 229–238.CrossRefGoogle Scholar
  33. 33.
    Franke, W.W., Schmid, E., Osborn, M. and Weber, K. 1978. Different intermediate-sized filaments distinguished by immunofluorescence microscopy. Proc. Natl. Acad. Sci. USA 75: 5034–5038.PubMedCrossRefGoogle Scholar
  34. 34.
    Franke, W.W., Schmid, E., Osborn, M. and Weber, K. 1979. Intermediate-sized filaments of human endothelial cells. J. Cell Biol. 81: 570–580.PubMedCrossRefGoogle Scholar
  35. 35.
    Freed, J.J. and Lebowitz, M.M. 1970. The association of a class of saltatory movements with microtubules in cultured cells. J. Cell Biol. 45: 334–354.PubMedCrossRefGoogle Scholar
  36. 36.
    Fulton, A.B., Wan, K.M. and Penman, S. 1980. The spacial distribution of polyribosomes in 3T3 cells and the associated assembly of proteins into the skeletal framework. Cell 20: 849–857.PubMedCrossRefGoogle Scholar
  37. 37.
    Gabbiani, G. and Badonnel, M.-C. 1975. Early changes of endothelial clefts after thermal injury. Microvasc. Res. 10: 65–75.PubMedCrossRefGoogle Scholar
  38. 38.
    Gabbiani, G., Badonnel, M.C. and Rona, G. 1975. Cytoplasmic contractile apparatus in aortic endothelial cells of hypertensive rats. Lab. Invest. 32: 227–234.PubMedGoogle Scholar
  39. 39.
    Gabbiani, G., Elmer, C., Guelpa, C., Vallotton, M.B., Badonnel, M.C. and Huttner, I. 1979. Morphologic and functional changes of the aortic intima during experimental hypertension. Am. J. Pathol. 96: 399–422.PubMedGoogle Scholar
  40. 40.
    Geiger, B. 1979. A130K protein from chicken gizzard: its localization at the termini of microfilament bundles in cultured chicken cells. Cell 18: 193–205.PubMedCrossRefGoogle Scholar
  41. 41.
    Giacomelli, F., Wiener, J. and Spiro, D. 1970. Cross-striated arrays of filaments in endothelium. J. Cell Biol. 45: 188–192.PubMedCrossRefGoogle Scholar
  42. 42.
    Gimbrone, M.A., Cotran, R.S. and Folkman, J. 1974. Human vascular endothelial cells in culture. J. Cell Biol. 60: 673–684.PubMedCrossRefGoogle Scholar
  43. 43.
    Godman, G.C. and Miranda, A.F. 1978. Cellular contractility and the visible effects of cytochalasin. In: Cytochalasins: Biochemical and Cell Biological Aspects. (Tanenbaum, S.W. ed.). Amsterdam, Elsevier/North-Holland Biomedical Press, pp. 277–429.Google Scholar
  44. 44.
    Goldman, R.D. and Knipe, D.M. 1972. Functions of cytoplasmic fibers in non-muscle cell motility. Cold Spring Harbor Symp. Quant. Biol. 37: 523–534.Google Scholar
  45. 45.
    Goldman, R.D., Milsted, A., Schloss, J.A., Starger, J. and Yerna, M.J. 1979. Cytoplasmic fibers in mammalian cells: cytoskeletal and contractile elements. Ann. Rev. Physiol. 41: 703–722.CrossRefGoogle Scholar
  46. 46.
    Goldman, R., Pollard, T. and Rosenbaum, J. 1976. Cell Motility, Books A, B, and C. Cold Spring Harbor Laboratory, New York.Google Scholar
  47. 47.
    Gordon, W.E., Bushneil, A. and Burridge, K. 1978. Characterization of the intermediate (10nm) filaments of cultured cells using an autoimmune rabbit antiserum. Cell 13: 249–261.PubMedCrossRefGoogle Scholar
  48. 48.
    Glaser, B.M., A’Amore, P.A., Seppa, H., Seppa, S. and Schiffmann, E. 1980. Adult tissues contain chemoattractants for vascular endothelial cells. Nature 288: 483–484.PubMedCrossRefGoogle Scholar
  49. 49.
    Glenner, G.G. and Page, D.L. 1976. Amyloid, amyloidosis, and amyloidogenesis. Internat. Rev. Pathol. 15: 1–92.Google Scholar
  50. 50.
    Gotlieb, A.I., May, L.McB., Subrahmanyan, L. and Kalnins, V.I. 1981. Distribution of microtubule organizing centers in migrating sheets of endothelial cells. J. Cell Biol. 91: 589–594.PubMedCrossRefGoogle Scholar
  51. 51.
    Haudenschild, C.C., Cotran, R.S., Gimbrone, M.A. and Folkman, J. 1975. Fine structure of vascular endothelium in culture. J. Ultrastruct. Res. 50: 22–32.PubMedCrossRefGoogle Scholar
  52. 52.
    Heggeness, M.H., Simon, M. and Singer, S.J. 1978. Association of mitochondria with microtubules in cultured cells. Proc. Natl. Acad. Sci. USA 75: 3863–3866.PubMedCrossRefGoogle Scholar
  53. 53.
    Hormia, M., Under, E., Lehto, V.P., Vartio, T., Badley, R.A. and Virtanen, I. 1982. Vimentin filaments in cultured endothelial cells form butyrate-sensitive juxtanuclear masses after repeated subculture. Exp. Cell Res. 138: 159–166.PubMedCrossRefGoogle Scholar
  54. 54.
    Huxley, H.E. 1963. Electron microscopic studies on the structure of natural and synthetic protein filaments from striated muscle. J. Mol. Biol. 7: 281–308.CrossRefGoogle Scholar
  55. 55.
    Ishikawa, H., Bischoff, R. and Holtzer, H. 1969. Formation of arrowhead complexes with heavy meromyosin in a variety of cell types. J. Cell Biol. 43: 312–328.PubMedCrossRefGoogle Scholar
  56. 56.
    Jaffe, E.A., Nachman, R.L., Becker, C.G. and Minick, C.R. 1973. Culture of human endothelial cells derived from umbilical veins. J. Clin. Invest. 52: 2745–2756.PubMedCrossRefGoogle Scholar
  57. 57.
    Jahnke, K. and Gorgas, K. 1979. The permeability of blood vessels in the guinea pig cochlea. I. Vessels of the modiolus and spiral vessel. Anat. Embryol. 146: 21–31.CrossRefGoogle Scholar
  58. 58.
    Johnson, L.V., Walsh, M.L. and Chen, L.B. 1980. Localization of mitochondria in living cells with rhodamine 123. Proc. Natl. Acad. Sci. USA 77: 990–994.PubMedCrossRefGoogle Scholar
  59. 59.
    Kalnins, V.I., Subrahmanyan, L. and Gotlieb, A.V. 1981. The reorganization of cytoskeletal fiber systems in spreading porcine endothelial cells in culture. Eur. J. Cell Biol. 24: 36–44.PubMedGoogle Scholar
  60. 60.
    Kawamura, J., Kamijyo, Y., Sunaga, T. and Nelson, E. 1974. Tubular bodies in vascular endothelium of a cerebellar neoplasm. Lab. Invest. 30: 358–365.PubMedGoogle Scholar
  61. 61.
    Kurki, P., Linder, E., Virtanen, I. and Stenman, S. 1977. Human smooth muscle autoantibodies reacting with intermediate (100Å) filaments. Nature 268: 240–241.PubMedCrossRefGoogle Scholar
  62. 62.
    LaFountain, J.R. 1972. An association between microtubules and aligned mitochondria in nephrotoma spermatocytes. Exp. Cell Res. 71: 325–328.CrossRefGoogle Scholar
  63. 63.
    Lauweryns, J.M., Baert, J. and DeLoecker, W. 1976. Fine filaments in lymphatic endothelial cells. J. Cell Biol. 68: 163–167.PubMedCrossRefGoogle Scholar
  64. 64.
    Lauweryns, J.M., Baert, J. and DeLoecker, W. 1975. Intracytoplasmic filaments in pulmonary lymphatic endothelial cells. Cell Tiss. Res. 163: 111–124.CrossRefGoogle Scholar
  65. 65.
    Lazarides, E. 1980. Intermediate filaments as mechanical integrators of cellular space. Nature (Lond.) 283: 249–256.CrossRefGoogle Scholar
  66. 66.
    Lazarides, E. and Burridge, K. 1975. Alpha-actinin: immunofluorescent localization of a muscle structural protein in non-muscle cells. Cell 6: 289–298.PubMedCrossRefGoogle Scholar
  67. 67.
    Leak, L. V. 1976. The structure of lymphatic capillaries in lymph formation. Fed. Proc. 35: 1863–1871.PubMedGoogle Scholar
  68. 68.
    Leak, L. V. and Kato, F. 1972. Electron microscopic studies of lymphatic capillaries during early inflammation. I. Mild and severe thermal injuries. Lab. Invest. 25: 572–588.Google Scholar
  69. 69.
    Le Beux, Y.J. and Willemot, J. 1978. Actin-like filaments in the endothelial cells of adult rat brain capillaries. Exp. Neurol. 58: 446–454.PubMedCrossRefGoogle Scholar
  70. 70.
    Lehto, V.-P., Virtanen, I. and Kurki, P. 1978. Intermediate filaments anchor the nuclei in nuclear monolayers of cultured human fibroblasts. Nature 272: 175–177.PubMedCrossRefGoogle Scholar
  71. 71.
    Majno, G., Shea, S.M. and Leventhal, M. 1969. Endothelial contraction induced by histamine-type mediators. J. Cell Biol. 42: 647–672.PubMedCrossRefGoogle Scholar
  72. 72.
    McAuslan, B.R. and Reilly, W. 1980. Endothelial cell phagokinesis in response to specific metal ions. Exp. Cell Res. 130: 147–157.PubMedCrossRefGoogle Scholar
  73. 73.
    Meloan, S.N., Waldrop, F.S., Puchtler, H. and Valentine, L.S. 1972. Cross-striated myoendothelial cells in splenic venous sinuses. J. Reticuloendo. Soc. 11: 566–578.Google Scholar
  74. 74.
    Moore, A., Jaffe, E.A., Becker, C.G. and Nachman, R.L. 1977. Myosin in cultured human endothelial cells. Brit. J. Haematol. 35: 71–79.CrossRefGoogle Scholar
  75. 75.
    Muthukkaruppan, V. and Auerbach, R. 1979. Angiogenesis in the mouse cornea. Science 205: 1416–1418.PubMedCrossRefGoogle Scholar
  76. 76.
    Pollard, T.D. 1976. Cytoskeletal functions of cytoplasmic contractile proteins. J. Supramol. Struct. 5: 317–334.PubMedCrossRefGoogle Scholar
  77. 77.
    Pollard, T.D. and Weihing, R.R. 1974. Actin and myosin and cell movement. CRC Critical Reviews in Biochemistry 2: 1–65.PubMedCrossRefGoogle Scholar
  78. 78.
    Porter, K.R. and Tucker, J.B. 1981. The ground substance of the living cell. Sci. Amer. 244 (3): 57–67.CrossRefGoogle Scholar
  79. 79.
    Prineas, J.W., Ouvrier, R.A., Wright, R.G., Walsh, J.C. and McLeod, J.G. 1976. Giant axonal neuropathy — a generalized disorder of cytoplasmic microfilament formation. J. Neuropath. Exp. Neurol. 35: 458–470.PubMedCrossRefGoogle Scholar
  80. 80.
    Rathke, P.C., Seib, E., Weber, K., Osborn, M. and Franke, W.W. 1977. Rat-like elements from actin-containing microfilament bundles observed in cultured cells after treatment with cytochalasin B (CA). Exp. Cell Res. 105: 253–262.PubMedCrossRefGoogle Scholar
  81. 81.
    Robertson, A.L. and Khairallah, P.A. 1972. Effects of angiotensin II and some analogues on vascular permeability in the rabbit. Circ. Res. 31: 923–931.PubMedGoogle Scholar
  82. 82.
    Röhlich, P. and Oláh, I. 1967. Cross-striated fibrils in endothelium of the rat myometrial arterioles. J. Ultrastruct. Res. 18: 667–676.PubMedCrossRefGoogle Scholar
  83. 83.
    Savion, H., Vlodavsky, I., Greenburg, G. and Gospodarowicz, D. 1982. Synthesis and distribution of cytoskeletal elements in endothelial cells as a function of cell growth and organization. J. Cell. Physiol. 110: 129–141.PubMedCrossRefGoogle Scholar
  84. 84.
    Schmid, E., Osborn, M., Rungger-Braendle, E., Gabbiani, G., Weber, K. and Franke, W.W. 1982. Distribution of vimentin and desmin filaments in smooth muscle tissue of mammalian and avian aorta. Exp. Cell Res. 137: 329–340.PubMedCrossRefGoogle Scholar
  85. 85.
    Seiden, S.C. and Schwartz, S.M. 1979. Cytochalasin B inhibition of endothelial proliferation at wound edges in vitro. J. Cell Biol. 81: 348–354.CrossRefGoogle Scholar
  86. 86.
    Shimamoto, T. 1972. New concept on atherogenesis and treatment of atherosclerotic disease with endothelial cell relaxant. Jap. Heart J. 13: 537–562.PubMedCrossRefGoogle Scholar
  87. 87.
    Shimamoto, T. and Sunaga, T. 1973. The contraction and blebbing of endothelial cells accompanied by acute infiltration of plasma substances into the vessel and their prevention. Atherogenesis: Proceedings of 2nd International Symposium on Atherogenesis, Thrombogenesis and Pyridolcarbonate Treatment. (Shimamoto, T. and Numano, F. eds.). Amsterdam, Excerpta Medica, pp. 3–31.Google Scholar
  88. 88.
    Skutelsky, E. and Danon, D. 1976. Redistribution of surface anionic sites on the luminal front of blood vessel endothelium after interaction with polycationic ligand. J. Cell Biol. 71: 232–241.PubMedCrossRefGoogle Scholar
  89. 89.
    Smith, U. and Ryan, J.W. 1973. Electron microscopy of endothelial cells on cellulose acetate paper. Tiss. Cell 5: 333–336.CrossRefGoogle Scholar
  90. 90.
    Smith, U., Ryan, J.W., Michie, D.D. and Smith, D.S. 1971. Endothelial projections as revealed by scanning electron microscopy. Science (USA) 173: 925–927.PubMedCrossRefGoogle Scholar
  91. 91.
    Snyder, J.A. and McIntosh, R.J. 1976. Biochemistry and physiology of microtubules. Ann. Rev. Biochem. 45: 699–720.PubMedCrossRefGoogle Scholar
  92. 92.
    Stein, O., Sanger, L. and Stein, Y. 1974. Colchicine-induced inhibition of lipoprotein and protein secretion into the serum and lack of interference with secretion of biliary phospholipids and cholesterol by rat liver in vivo. J. Cell Biol. 62: 90–103.PubMedCrossRefGoogle Scholar
  93. 93.
    Steinsiepe, K.F. and Weibel, E.R. 1970. Electron microscopic studies on specific organelles of endothelial cells in the frog. Z. Zeilforsch. 108: 105–126.CrossRefGoogle Scholar
  94. 94.
    Sun, C.N. and Ghidoni, J.J. 1971. Complex vesicles, microtubules, and cytoplasmic filaments in endothelial cells of normal dog aorta. 26th Ann. E.M.S.A. Meeting, pp. 172-173.Google Scholar
  95. 95.
    Todd, G.L. and Bernard, G.R. 1974. The cervical lymphatic ducts of the dog: structure and function of the endothelial lining. Microvas. Res. 8: 139–150.CrossRefGoogle Scholar
  96. 96.
    Vlodavsky, I. and Gospodarowicz, D. 1979. Structural and functional alterations in the surface of vascular endothelial cells associated with the formation of a confluent cell monolayer and with the withdrawal of fibroblast growth factor. J. Supramol. Struct. 12: 73–114.PubMedCrossRefGoogle Scholar
  97. 97.
    Wang, E. and Goldman, R.D. 1978. Functions of cytoplasmic fibers in intracellular movements in BHK-21 cells. J. Cell Biol. 79: 708–726.PubMedCrossRefGoogle Scholar
  98. 98.
    Wang, K., Ash, J.F. and Singer, S.J. 1975. Filamin, a new high-molecular-weight protein found in smooth and non-muscle cells. Proc. Natl. Acad. Sci. USA 72: 4483–4486.PubMedCrossRefGoogle Scholar
  99. 99.
    Weber, K., Rathke, P.C., Osborn, M. and Franke, W.W. 1976. Distribution of actin and tubulin in cells and in glycerinated cell models after treatment with cytochal’asin B (CB). Exp. Cell Res. 102: 285–297.PubMedCrossRefGoogle Scholar
  100. 100.
    Weibel, E.R. and Palade, G.E. 1964. New cytoplasmic components in arterial endothelia. J. Cell Biol. 23: 101–112.PubMedCrossRefGoogle Scholar
  101. 101.
    Wolosewick, J.J. and Porter, K.R. 1979. Microtrabecular lattice of the cytoplasmic ground substance: artifact or reality. J. Cell Biol. 82: 114–139.PubMedCrossRefGoogle Scholar
  102. 102.
    Wunderlich, F. and Herlan, G. 1977. A reversibly contractile nuclear matrix. J. Cell Biol. 73: 271–278.PubMedCrossRefGoogle Scholar
  103. 103.
    Yohro, T. and Burnstock, Gs. 1973. Filament bundles and contractility of endothelial cells in coronary arteries. Z. Zellforsch. 138: 85–95.PubMedCrossRefGoogle Scholar
  104. 104.
    Zetter, B.R. 1980. Migration of capillary endothelial cells is stimulated by tumor-derived factors. Nature 285: 41–43.PubMedCrossRefGoogle Scholar

Note added in proof

  1. 1.
    Gabbiani, G., Gabbionai, F., Lombard, D. and Schwartz, S.M. 1983. Proc. Natl. Acad. Sci. USA 80: 2361–2364.PubMedCrossRefGoogle Scholar
  2. 2.
    Rogers, K.A. and Kalnins, V.I. 1981. The immunofluorescent visualization of microtubules and microfilaments in endothelial cells fixed in situ. J. Cell Biol. 91 (2, Pt. 2): 382a (Abstr.).Google Scholar
  3. 3.
    White, G.E., Gimbrone, M.A. and Fujwara, K. 1983. Factors influencing the expression of stress fibers in vascular endothelial cells in situ. J. Cell Biol. 97: 416–424.PubMedCrossRefGoogle Scholar
  4. 4.
    Wong, A.J., Pollard, T.D. and Herman, I.M. 1983. Actin filament stress fibers in vascular endothelial cells in vivo. Science 219: 867–869.PubMedCrossRefGoogle Scholar

Copyright information

© Martinus Nijhoff Publishers, Boston 1984

Authors and Affiliations

  • Stephen H. Blose

There are no affiliations available

Personalised recommendations