Blastic Transformation of Chronic Granulocytic Leukemia and other Myeloproliferative Disorders

A Study of 26 Cases Emphasizing the Importance of Cytochemistry and Ultrastructure in Defining the Cell Phenotype
  • Aaron Polliack
  • Rachel Leizerowitz
  • Abraham Kornberg
  • Dorit Gurfel
  • Haim Gamliel
Part of the Developments in Oncology Series book series (DION, volume 14)


Myeloproliferative disorders such as polycythemia vera (PV) and agnogenic myeloid metaplasia (AMM) with myelofibrosis (MF) progress to acute leukemia in about 30% of cases [1–3]. However, careful cytochemical, surface marker, and ultra-structural studies have not been performed in all these cases [4].


Acute Lymphoblastic Leukemia Chronic Myeloid Leukaemia Acute Leukemia Blast Crisis Myeloproliferative Disorder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rosenthal DS. Moloney WC. Myeloid metaplasia: A study of 98 cases. Postgrad Med 46: 136–142, 1969.Google Scholar
  2. 2.
    Shaw MT. Bottomley RH, Grozca PN et al. Heterogeneity of morphological, cyto-chemical and cytogenetic features in the blasric phase of chronic granulocytic leukemia. Cancer 35:199–207, 197 5.PubMedCrossRefGoogle Scholar
  3. 3.
    Rosenthal DS, Moloney WC. Occurrence of acute leukemia in myeloproliferative disorders. Br J Haematol 36: 373–382, 1977.PubMedCrossRefGoogle Scholar
  4. 4.
    Polliack A, Prokocimer M, Matzner Y. Lymphoblastic leukemic transformation (lymphoblastic crisis) in myelofibrosis and myeloid metaplasia. Am J Hematol 9: 211–220, 1980.PubMedCrossRefGoogle Scholar
  5. 5.
    Killman SA. Acute leukemia: Development, remission relapse pattern relation-ship between normal and leukemic hemopoiesis and the “sleeper-to-feeder” stem cell hypothesis. Ser Haematol 1: 103–107, 1968.Google Scholar
  6. 6.
    Pedersen B. The blastic crisis of chronic myeloid leukaemia: Acute transformation of a preleukaemic condition? Annotation. Br J Haematol 25: 141–145, 1973.PubMedCrossRefGoogle Scholar
  7. 7.
    Boggs DR. Haematopoietic stem cell theory in relation to possible lymphoblastic conversion of chronic myeloid leukemia. Editorial. Blood 44: 449–453, 1974.PubMedGoogle Scholar
  8. 8.
    Rosenthal S. Canellos GP. De Vita VT, et al. Characteristics of blast crisis in chronic granulocytic leukemia. Blood 49: 705–714, 1977.PubMedGoogle Scholar
  9. 9.
    Rosenthal S. Canellos GP, Gralnick HR. Erythroblastic transformation ot chronic granulocytic leukemia. Am I Med 63:116–124, 1977.Google Scholar
  10. 10.
    Janossy G, Roberts M. Greaves MF. Target cells in chronic myeloid leukemia and its relationship to acute lymphoid leukemia. Lancet 2: 1058–1061. 1976.PubMedCrossRefGoogle Scholar
  11. 11.
    Janossy G, Greaves MF, Revez T, et al. Blast crisis of chronic myeloid leukaemia (CML): II. Cell surface marker analysis of lymphoid and myeloid cases. Br J Haematol 34: 179–192, 1976.PubMedCrossRefGoogle Scholar
  12. 12.
    Gordon DS, Hutton JJ, Smalley RB. et al. TdT cytochemistry and membrane receptors in adult acute leukemia. Blood 52: 1079–1088. 1978.PubMedGoogle Scholar
  13. 13.
    Sarin PS, Anderson PN. Gallo RC. Terminal deoxynucleotidyl transferase activities in human blood leukocytes and in lymphoblast cell lines and in blast cells of some patients with chronic myelogenous leukemia in the acute phase. Blood 47:11–20. 1976.Google Scholar
  14. 14.
    Breton-Gorius JB, Reyes F. Vernant JP. et al. The blast crisis of chronic granulocytic leukaemia: Megakaryoblasric nature of cells as revealed by the presence of platelet peroxidase—a cvtochemical ultrastructural study. Br J Haematol 39: 295–303. 1978.PubMedCrossRefGoogle Scholar
  15. 15.
    Fialkow PJ.Jacobson RJ, Papayannopoulou T, et al. Chronic myelocytic leukemia: Clonal origin in a stem cell common to the granulocyte/macrophage. Am J Med 63: 125–129, 1977.PubMedCrossRefGoogle Scholar
  16. 16.
    Fialkow PJ, Denman AM, Jacobson RJ, et al. Chronic myelocytic leukemia: Origin of some lymphocytes from leukemic stem cells. J Clin Invest 62: 815–823, 1978.PubMedCrossRefGoogle Scholar
  17. 17.
    Moore MAS, Ekert H. Fitzgerald MG. et al. Evidence for the clonal origin of chronic myeloid leukemia from a sex chromosome mosaic: Clinical cytogenetic and marrow culture studies. Blood 43: 15–22. 1974.PubMedGoogle Scholar
  18. 18.
    Boggs DR Hematopoietic stem cell theory in relation to possible lymphoblastic conversion of chronic myeloid leukemia. Blood 44: 449–453. 1974.PubMedGoogle Scholar
  19. 19.
    McCaffrey R. Harrison TA, Parkman R. et al. TdT activity in human leukemic cells and in normal human thymocytes. New Engl J Med 292: 775–780, 1975.PubMedCrossRefGoogle Scholar
  20. 20.
    Greaves M. Analysis of the clinical and biological significance of lymphoid phenotypes in acute leukemia. Cancer Res 41: 4752–4766, 1981.PubMedGoogle Scholar
  21. 21.
    Catovsky D,, de Salvo Cardullo L. O’Brien M et al. Cytochemical markers of differentiation in acute leukemia. Cancer Res 41: 4824–4832, 1981.PubMedGoogle Scholar
  22. 22.
    Bain B, Catovsky D, O’Brien M et al. Megakaryobiastic transformation of chronic granulocytic leukemia: An electron microscopy and cytochemical study. J Clin Pathol 30: 235–242, 1977.PubMedCrossRefGoogle Scholar
  23. 23.
    Marie JP, Vcrnant JP, Dreyfus B, et al: Ultrastructural localization of peroxidases in “undifferentiated” blasts during the blast crisis of chronic granulocytic leukaemia. Br J Haematol 43: 549–558, 1979.PubMedCrossRefGoogle Scholar
  24. 24.
    Williams JW. Hematology. New York: McGraw-Hill, pp. 680–683. 1972.Google Scholar
  25. Wintrobe MM. Clinical hematology. 7th ed. Philadelphia: Lea & Febiger. pp. 988 and 1777, 1974.Google Scholar
  26. 26.
    Hayhoe FGT, Quaglino D, Doll R. The cytology and cytochemistry of acute leukaemia. London: Her Majesty’s Stationery Office. 1964, p. 105.Google Scholar
  27. 27.
    Yam LT, L. CY. Crosby WH. Cytochemical identification of monocytes and granulocytes. Am J Clin Pathol 55: 283–286, 1971.PubMedGoogle Scholar
  28. 28.
    Barka T, Anderson PJ. Histochemical methods of acid phosphatase using hex azonium pararosanalin as coupler. J Histochem Cytochem 10: 741–747, 1962.CrossRefGoogle Scholar
  29. 29.
    Flandrin G, Brouet JC. The Sezary cell: Cytologic, cytochcmical and immunologic studies. Mayo Clin Proc 49: 575–583. 1974.PubMedGoogle Scholar
  30. 30.
    Bennett JM, Dutcher TF. The cytochemistry of acute leukemia: Observations on glycogen and neutral fat in bone marrow aspirate. Blood 33: 341–347, 1969.PubMedGoogle Scholar
  31. 31.
    Kageoka T, Nakashima K, Miwa S. Simultaneous demonstration of peroxidase and lysozyme activities in leukemic cells. Am I Clin Pathol 67: 482–485, 1977.Google Scholar
  32. 32.
    Jondal M. Holm G, Wigzell H. Surlace markers on human B and T lymphocytes: I. A large proportion of lymphocytes forming non-immune rosettes with sheep red blood cells. J Exp Med 136: 207–215, 1972.PubMedCrossRefGoogle Scholar
  33. Yoshida T, Andersson B. Evidence for a receptor recognizing antigen complexed immunoglobulin on the surface of activated mouse thymus lymphocytes. Scand J Immunol 1: 401–408, 1972.PubMedCrossRefGoogle Scholar
  34. 34.
    Klein E, Klein G, Nadkarni JS, Nadkarni JJ, Wigzell H, Clifford P. Surface IgM kappa specificity on a Burkitt lymphoma cell in vivo and derived culture lines. Cancer Res 28: 1300–1310, 1968.PubMedGoogle Scholar
  35. 35.
    Osserman F.F. Monocytic and myelo-monocytic leukemia with increased serum and urine lysozyme as a late complication in plasma cell mveloma. Br Med J 1: 327–330, 1971.CrossRefGoogle Scholar
  36. 36.
    Rachmilewitz D. Polliack A. Hershko C. Acute promyelocytic leukaemia: A report of 5 cases with a comment on the diagnostic significance of serum vitamin B12 determination. Br J Haematol 22: 87–92, 1972.PubMedCrossRefGoogle Scholar
  37. 37.
    Kornberg A. Polliack A. Serum LDH levels in acute leukemia Marked elevations in lymphoblastic leukemia. Blood 56: 351–355, 1980.PubMedGoogle Scholar
  38. 38.
    Spurr AR. A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26: 31–43, 1969.PubMedCrossRefGoogle Scholar
  39. 39.
    Graham RC, Karnovsky MJ. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: Ultrastructural cytochemistry by a new technique. J Histochem Cytochem 14: 291–302, 1966.PubMedCrossRefGoogle Scholar
  40. 40.
    Payne BC. Kim H. Pangalis GA. et al. A method for the ultrastructural demonstration of non-specific esterase in human blood and lymphoid tissue. Histochem J 12: 71–86, 1980.PubMedCrossRefGoogle Scholar
  41. 41.
    Polliack A. Normal, transformed and leukemic leukocytes: A scanning electron microscopy atlas. Berlin: Springer Verlag, 1977.Google Scholar
  42. 42.
    Polliack A. Prokocimer M, Or R, et al. Use of multiparameter studies and SEM in the interpretation of surface morphology with cell tvpe in 135 cases of human leukemias. Cancer Res 41: 1171–1179, 1981.PubMedGoogle Scholar
  43. Bennett JM. Catovsky D. Daniel MT, et al. Proposals for the classification of the acute leukaemias. Br J Haematol 33: 451–458, 1976.PubMedCrossRefGoogle Scholar
  44. 44.
    Polliack A, Leizerowitz R. Gurfel D, et al. Surface features of leukemic megakaryocytes: A study of 5 cases of megakaryoblastic leukaemia with SEM. Scand J Haematol 30: 145–150, 1983.PubMedCrossRefGoogle Scholar

Copyright information

© Martinus Nijhoff Publishing, Boston/The Hague/Dordrecht/Lancaster 1984

Authors and Affiliations

  • Aaron Polliack
  • Rachel Leizerowitz
  • Abraham Kornberg
  • Dorit Gurfel
  • Haim Gamliel

There are no affiliations available

Personalised recommendations