Pathology of Neutrophil Granules

Selective Abnormalities of Azurophil and Specific Granules of Human Neutrophilic Leukocytes
  • Dorothy F. Bainton
Part of the Developments in Oncology Series book series (DION, volume 14)


The human neutrophilic polymorphonuclear granulocyte (PMN), which constitutes 60-65*% of the total white-cell population [(4.3–11.0 × 109)/L] of blood, is easily identified on Wright’s-stained blood smears by its small, somewhat indistinct, violet-colored granules. PMN play a vital role in the body’s defense against invasion by microorganisms. They are highly differentiated cells, structurally specialized for their particular function in the inflammatory process—that of rapidly migrating in large numbers from blood to tissue and of phagocytizing and destroying foreign matter. The mature PMN contains numerous cytoplasmic granules, which store bactericidal agents and lysosomal enzymes until such elements are needed for the killing and digestion of ingested particles [17].


Acute Myelogenous Leukemia Azurophil Granule Specific Granule Congenital Neutropenia Abnormal Variant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ackerman GA. Microscopic and histochemical studies on the Auer bodies in leukemic cells. Blood 5: 847–863; 1950.PubMedGoogle Scholar
  2. 2.
    Auer J. Some hitherto undescribed structures found in the large lymphocytes of a case of acute leukaemia. Am J Med Sci 131: 1002–1015, 1906.CrossRefGoogle Scholar
  3. 3.
    Baggiolini M. The neutrophil. In: Weissmann. G.. ed. The cell biology of inflammation. New York: Elsevier, North-Holland; 1980, pp. 163–187.Google Scholar
  4. 4.
    Bainton DF. Abnormal neutrophils in acute myelogenous leukemia: Identification of subpopulations based on analysis of azurophil and specific granules. Blood Cells 1: 191–199; 1975.Google Scholar
  5. 5.
    Bainton DF. Differentiation of human neu-trophilic granulocytes: Normal and abnormal. In: Grccnwalt TJ, Jamicson GA, eds. The granulocyte: Function and clinical utilization. New York: Alan R. Liss, 1977, 1–27.Google Scholar
  6. 6.
    Bainton DF. The cells of inflammation: A general view. In: Weissmann G, ed. The cell biology of inflammation. New York: Elsevier, North-Holland, 1980, pp. 1–25.Google Scholar
  7. 7.
    Bainton DF, Farquhar MG. Origin of granules in polymorphonuclear leukocytes: Two types derived from opposite faces of the Golgi complex in developing granulocytes. J Cell Biol 28: 277–301, 1966.PubMedCrossRefGoogle Scholar
  8. 8.
    Bainton DF, Friedlander LM, Shohct SB. Abnormalities in granule formation in acute myelogenous leukemia. Blood 49: 693–704, 1977.PubMedGoogle Scholar
  9. 9.
    Bainton DF, Ullyot JL, Farquhar MG. The development of neutrophilic polymorphonuclear leukocytes in human bone marrow: Origin and content of azurophil and specific granules. J Exp Med 134: 907–934, 1971.PubMedCrossRefGoogle Scholar
  10. 10.
    Bessis M. Living blood cells and their ultrastructure. New York: Springer Verlag. 1973.Google Scholar
  11. 11.
    Breton-Gorius J. The value of cytochemical peroxidase reactions at the ultrastructural level in haematology. Histochcm J 12: 127–137, 1980.CrossRefGoogle Scholar
  12. 12.
    Breton-Gorius J, Houssay D. Auer bodies in acute promyclocytic leukemia. Demonstration of their fine structure and peroxi-dase localization. Lib Invest 28: 135–141, 1973.Google Scholar
  13. 13.
    Breton-Gorius J, Coquin MY, Guichard J. Activities peroxydasiques de certaines granulations des neutrophiles dans deux cas de deficit congenital en myelopcroxy-dase. CR Acad Sci, Paris (D) 280: 1753–1756, 1975.Google Scholar
  14. 14.
    Breton-Gorius J, Houssay D. Dreyfus B. Partial myleoperoxidase deficiency in a case of preleukaemia. Br J Haematol 30. 273–278, 1975.PubMedCrossRefGoogle Scholar
  15. 15.
    Breton-Gorius J, Mason DY. Buriot D, Vilde JL. Griscelli C. Lactoferrin deficiency as a consequence of a lack of specific granules in neutrophils from a patient with recurrent infections. Detection by immunoperoxidase staining for lactoferrin and cytochemical electron microscopy. Am J Pathol 99: 413–428, 1980.PubMedGoogle Scholar
  16. 16.
    Catovsky D, Galton DAG, Robinson J. Myclopcroxidase-deficienc neutrophils in acute myeloid leukaemia. Scand J Haematol 9: 142–148, 1972.PubMedCrossRefGoogle Scholar
  17. 17.
    Cohn ZA, Hirsch JG. The isolation and properties of the specific cytoplasmic granules of rabbit polymorphonuclear leucocytes. J Exp Med 112: 983–1004, I960.Google Scholar
  18. 18.
    Cronkite F.P. Vincent PC. Granulopoiesis. Ser Haematol 2: 3–43, 1969.Google Scholar
  19. 19.
    Davis WC, Douglas SD. Defective granule formation and function in the Chediak-Higasbi syndrome in man and animals. Semin Hematol 9: 431–450, 1972.PubMedGoogle Scholar
  20. 20.
    Dittman, WA, Kramer RJ. Bainton DF. Electron microscopic and peroxidase cyto-chemical analysis of pink pscudo-Chediak-Higashi granules in acute myelogenous leukemia. Cancer Res 40, 1980.Google Scholar
  21. 21.
    Efrati P, Nir E. Kaplan H, Dvilanski A. Pseudo-Chediak-Higashi anomaly in acute myeloid leukaemia: An electron microscopical study. Acta Haematol 61: 264–271, 1979.PubMedCrossRefGoogle Scholar
  22. 22.
    Gallagher R. Collins S. Trujillo J. 61 McCredie K. Ahearn M, Tsai S, Metzgar R, Aulakh G, Ting R, Ruscctti F, Gallo R. Characterization of the continuous differentiating myeloid cell line (HL-60) from a patient with acute promyelocytic leukemia. Blood 54: 713–733, 1979.PubMedGoogle Scholar
  23. 23.
    Gorman AM, O’Connell LG. Pseudo- Chediak-Higashi anomaly in acute leukemia. Am I Clin Pathol 65: 1030–1031, 1976.Google Scholar
  24. 24.
    Hanker JS, Romanovicz DK. Phi bodies: Peroxidase particles that produce crystalloid cellular inclusions. Science 197: 895–898, 1977.PubMedCrossRefGoogle Scholar
  25. 25.
    Hanker JS, Laszlo J, Moore JO. The light microscopic demonstration of hydroperoxidase-positive phi bodies and rods in leukocytes in acute myeloid leukemia. Histochem 58: 241–252, 1978.CrossRefGoogle Scholar
  26. 26.
    Hayhoe FGJ, Quaglino D. 1 hematological cytochemistry. Edinburgh/London/New York: Churchill Livingstone, p. 273, 1980.Google Scholar
  27. 27.
    Kitahara M, Simonian Y. Eyre HJ Familial leukocyte myeloperoxidase deficiency. Blood 50 (suppl 1): 152, 1977.Google Scholar
  28. 28.
    Klebanoff SJ, Clark RA. The neutrophil: Function and clinical disorders. Amsterdam: North-Holland, p. 36. 1978.Google Scholar
  29. 29.
    Koeffler HP, Golde DW. Human myeloid leukemia cell lines: A review. Blood 56: 344–350. 1980.PubMedGoogle Scholar
  30. 30.
    Komiyama A, Morosawa H, Nakahata T. Miyagawa Y. Akabene T Abnormal neutrophil maturation in a neutrophil defect with morphologic abnormality and impaired function. J Ped 94: 19–25. 1979.CrossRefGoogle Scholar
  31. 31.
    Lehrer Rl, Cline MJ. Leukocyte myeloperoxidase deficiency and disseminated candidiasis: The role of myeloperoxidase in resistance to Candida infection. J Clin Invest 48: 1478–1488, 1969.PubMedCrossRefGoogle Scholar
  32. 32.
    Lehrer Rl, Goldberg LS, Apple MA, Rosenthal NP. Refractory megaloblastic anemia with myeloperoxidase deficient neutrophils. Ann Intern Med 76: 447–453, 1972.Google Scholar
  33. 33.
    MandelkornJ, Silverman MS. Harrison JE. Hanker JS. Immunofluorescent demonstration of myeloperoxidase of phi bodies and rods in leukaemic leucocytes. Histochem J 12: 449–456, 1980.CrossRefGoogle Scholar
  34. 34.
    McCall CE, Katayama 1, Cotran RS, Finland M. Lysosomal and ultrastructural changes in human “toxic” neutrophils during bacterial infection. J Exp Med 129: 267–293, 1969.PubMedCrossRefGoogle Scholar
  35. 35.
    Mintz U, Djaletti M, Rozensajn L. Pinkhas J, de Vries A. Giant lysosome-like structures in promyelocyte leukemia. Ultra-structural and cytochemical observations. Biomedicine 19: 426–430. 1973.PubMedGoogle Scholar
  36. 36.
    Odeberg H. Olofsson T. Olsson I. Primary and secondary granule contents and bactericidal capability of neutrophils in acute leukaemia. Blood Cells 2: 543–551, 1976.Google Scholar
  37. 37.
    Olsson I. Venge P. The role of the human neutrophil in the inflammatory reaction. Allergy 35: 1–13, 1980.PubMedCrossRefGoogle Scholar
  38. 38.
    Palade G. Intracellular aspects of the process of protein synthesis. Science 189: 347–358, 1975.PubMedCrossRefGoogle Scholar
  39. 39.
    Palakavongs P. Teichberg S, Vinceguerra V, Degnan TJ. Sinlaratana P. Ultrastructural cytochemical analysis of blastic transformation of chronic myelocytic leukemia. Blood 49: 535–547. 1977.PubMedGoogle Scholar
  40. 40.
    Parmley RT, Ogawa M, Darby CP Jr., Spicer SS. Congenital neutropenia: Neutrophil proliferation with abnormal maturation. Blood 46: 723–734, 1975PubMedGoogle Scholar
  41. 41.
    Parmley RT. Dahl GV, Austin RL. Gauthier PA, Denys FR. Ultrastructure and cytokinetics of leukemic myeloblasts containing giant granules. Cancer Res 39: 3834–3844. 1979.PubMedGoogle Scholar
  42. 42.
    Parmley RT. Crist WM. Ragab AH, Boxer LA. Malluh A. Lui VK. Darby CP. Congenital dysgranulopoietic neutropenia: Clinical, serologic, ultrastructural. and in vitro proliferative characteristics. Blood 56: 465–475, 1980.PubMedGoogle Scholar
  43. 43.
    Parry M, Root RK. Metcalf MA. Delaney K. Myeloperoxidase (MPO) deficiency The most common neutrophil (PMN) functional defect? Clin Res 28: 549a. 1980.Google Scholar
  44. 44.
    Rausch PG. Pryzwansky KB, Spitznagel JK. lmmunocvtochemical identification of azurophilic and specific granule markers in the giant granules of Chediak-Higashi neutrophils. New Engl J Med 298: 694–698. 1978.CrossRefGoogle Scholar
  45. 45.
    Rausch PG. Pryzwanski KB. Spitznagel JK. Herion JC. Immunocytochemical identification of abnormal polymorphonuclear neutrophils in patients with leukemia. Blood Cells 4. 369–376. 1978.PubMedGoogle Scholar
  46. 46.
    Repine JE. Clawson CC. Brunning RD. Abnormal pattern of bactericidal activity of 62 neutrophils deficient in granules, myeloperoxidase, and alkaline phosphatase. J Lab Clin Med 88: 788–795. 1976.PubMedGoogle Scholar
  47. 47.
    Schmalzl F. Huhn D. Asamer H. Rindler R, Braunsteiner H. Cytochemistry and ultrastructurc of pathologic granulation in myelogenous leukemia. Blut 27: 243–260, 1973.CrossRefGoogle Scholar
  48. 48.
    Strauss RG, Hove Kii, Jones JF. Mauer AM, Fulginiti VA. An anomaly of neutrophil morphology with impaired function. New Fngl J Med 290:478–484. 1974Google Scholar
  49. 49.
    Tulliez M. Dreton-Gorius J. Three types of Auer bodies in acute leukemia. Lab Invest 41: 419–426, 1979.PubMedGoogle Scholar
  50. 50.
    Tulliez M, Vernant JP. Breton-Gonus J, Imbert M, Sultan C. Pseudo-Chediak- Higashi anomaly in a case of acute myeloid leukemia: Electron microscopic studies. Blood 54: 863–871, 1979.PubMedGoogle Scholar
  51. 51.
    Ullyot JL. Bainton DF. Azurophil and specific granules of blood neutrophils in chronic myelogenous leukemia: An ultrastructural and cytochcmical analysis. Blood 44: 469–482, 1974.Google Scholar
  52. 52.
    Van Slyck FJ, Rebuck JW. Pseudo- Chediak-Higashi anomaly in acute leukemia: A significant morphologic corollary? Am J Clin Pathol 62: 67 3–678. 1974.Google Scholar
  53. 53.
    Wetzel BK. Horn RG, Spicer SS. Fine-structural studies on the development of heterophil, eosinophil, and basophil granulocytes in rabbits. Lab Invest 16: 349–382, 1967.PubMedGoogle Scholar

Copyright information

© Martinus Nijhoff Publishing, Boston/The Hague/Dordrecht/Lancaster 1984

Authors and Affiliations

  • Dorothy F. Bainton

There are no affiliations available

Personalised recommendations