Advertisement

Contribution of Cytochemistry in Leukemia

  • Gerassimos A. Pangalis
Part of the Developments in Oncology Series book series (DION, volume 14)

Abstract

The recognition of subgroups of leukemias by morphologic and cytochemical criteria has greatly contributed over the past decades in the differential diagnosis, classification, and prognosis of the leukemic proliferations [1–13]. In 1964 Hayhoe and his associates [1] in a combined morphologic and cytochemical study of acute leukemias were able to determine four different types of leukemias: acute myeloblastic, acute myelomonocytic, acute lymphoblastic and erythremic myelosis. A few years later Schmalzl and Braunsteiner [14] and Daniel et al. [15] separated the acute monocytic leukemias from the other acute leukemias using the sodium fluoride sensitive naphthol AS-D acetate esterase reaction (NASDA + NaF).

Keywords

Acute Lymphoblastic Leukemia Acute Leukemia Hairy Cell Leukemia Acute Lymphatic Leukemia Prolymphocytic Leukemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hay hoe FGJ, Quaglino D, Doll R. The cytology and cytochemistry of acutc leukemias. MRC Special Report Series, no 304. London: Her Majesty’s Stationery Office, 1964.Google Scholar
  2. 2.
    Schmalzl F, Braunsteiner H. The application of cytochcmical methods to the study of acute leukemia. Acta Haematol 45: 209–217, 1971.PubMedCrossRefGoogle Scholar
  3. 3.
    Hayhoe FGJ, Cawley JC. Acute leukaemia: Cellular morphology, cytochemistry and fine structure. Clin Haematol 1: 49–94, 1972.Google Scholar
  4. 4.
    Flandrin G, Daniel MT. Practical value of cytochcmical studies for the classification of acute leukemias. Rec Results Cancer Res 43: 43–56, 1973.Google Scholar
  5. 5.
    Löffler H. Biochemical properties of leukemic blast cells revealed by cytochemical methods: Their relation to prognosis. Adv Biosci 14: 163–17 3, 1973.Google Scholar
  6. 6.
    Löffler H. Indications and limits of cytochemistry in acute leukemias. Rec Results Cancer Res 43 57–62, 1973.Google Scholar
  7. 7.
    Yam LT, Li CY, Wolfe HJ, May PW. Histochcmical study of acute leukemia Arch Pathol 97: 129–135, 1974.PubMedGoogle Scholar
  8. 8.
    Bennett JM. Reed CE. Acute leukemia cytochemical profile: Diagnostic and clinical implications. Blood Cells 1: 101–108, 1975.Google Scholar
  9. 9.
    Shaw MT. The cytochemistry of acute leukemia: A diagnostic and prognostic evaluation. Semin Oncol 3: 219–228, 1976.PubMedGoogle Scholar
  10. 10.
    Scott CS. Cytochemical applications in haematologv, with particular reference to acute leukaemias: A review. Med Lab Sci 35: 111–136, 1978.PubMedGoogle Scholar
  11. 11.
    layhoe FGJ, Quaglino D. 1 iacmatological cytochemistry. Edinburgh/London/New York: Churchill Livingstone, 1980.Google Scholar
  12. 12.
    Flandrin G, Daniel MT. Cytochemistry in the classification of leukemias. In: Catovsky D, ed. The leukemic cell. Edinburgh/London/New York, Churchill Livingstone, 1981, pp 29–48.Google Scholar
  13. 13.
    Pangalis GA. Cytochemical investigation of leukemias and lymphomas. Iatriki 39: 483–490, 1981.Google Scholar
  14. 14.
    Schmalzl F, Braunsteiner H. Zur diagnose monozytärer leukämien mit zytochemischen methoden. Acta Haematol 40: 121–133. 1968.PubMedCrossRefGoogle Scholar
  15. 15.
    Daniel MT. Flandrin G. Lejeune F. Liso P. Lortholary P. Les estérases spécifiques monocytaires: Utilisation dans la classification des leukémies aigües. Nouv Rev Fr Hématol 11: 233–249, 1971.PubMedGoogle Scholar
  16. 16.
    Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DAG. Gralnick HR. Sultan C. Proposals for the classification of the acute leukemias. Br J Haematol 33: 451–458, 1976.PubMedCrossRefGoogle Scholar
  17. 17.
    Barr RD, Perry S. Lysosomal acid hydrolases in human lymphocytes subpopulations. Br J Haematol 32: 565–572, 1976.PubMedCrossRefGoogle Scholar
  18. 18.
    Meusers P, Konig E, Fink U, Brittinger G. Lysosomal acid phosphatase: Differences between normal and chronic lymphocytic leukaemia T and B lymphocytes. Blut 33: 313–318, 1976.PubMedCrossRefGoogle Scholar
  19. 19.
    Ranki A, Tötterman TH, Häyry P. Identification of resting human T and B lymphocytes by acid α-naphthyl acetate esterase staining combined with rosette formation with staphylococcus aureus srrain Cowan I. Scand J Immunol 5: 1129–1138, 1976.PubMedCrossRefGoogle Scholar
  20. 20.
    Wehinger H, Mobius W. Cytochemical studies on T and B lymphocytes and lymphoblasts with special reference to acid phosphatase. Acta Haematol 56: 129–136, 1976.PubMedCrossRefGoogle Scholar
  21. 21.
    Higgy KE. Burns GF. Hayhoe FGJ. Discrimination of B, T and null lymphocytes of esterase cytochemistry. Scand J Haematol 81: 437–488, 1977.Google Scholar
  22. 22.
    Tötterman TH, Ranki A, Häyry P. Expression of the acid α-naphthyl acetate esterase marker by activated and secondary T-lymphocytes in man. Scand J Immunol 6: 305–310, 1977.PubMedCrossRefGoogle Scholar
  23. 23.
    Barr RD, Allardyce M. Cytochemical identification of human T lymphocytes. 118: 1279–1281, 1978.Google Scholar
  24. 24.
    Grossi CE, Webb SR. Zicca A. Lydyard PM. Moretta L, Mingari MC, Cooper MA. Morphological and histochemical analyses of two human T-cells subpopulations bearing receptor for lgM of IgG. J of Exp Med 147: 1405–1417, 1978.CrossRefGoogle Scholar
  25. 25.
    Knowles DM, Hoffman T, Ferrarini M, Kunkel HG. The demonstration of acid α-naphthyl acetate esterase activity in human lymphocytes: Usefulness as a T cell marker. Cell Immunol 35: 112–123, 1978.PubMedCrossRefGoogle Scholar
  26. 26.
    Pangalis GA, Waldman SR, Rappaport H. Cytochemical findings in human nonneoplastic blood and tonsillar B and T lymphocytes. Am J Clin Pathol 69: 314–318, 1978.PubMedGoogle Scholar
  27. 27.
    Ranki A. Nonspecific esterase activity in human lymphocytes: Histochemical characterization and distribution among major lymphocyte subclasses. Clin Immunol Immunopathol 10: 47–58, 1978.PubMedCrossRefGoogle Scholar
  28. 28.
    Mancont PE, Marrosu MG, Paghi I. Correale G, Zacchco D. Alpha-naphthyl acetate esterase activity in human lymphocytes: Distribution in lymphocyte sub-populations and in mitogen activated cells. Scand J Immunol 9: 99–104, 1979.CrossRefGoogle Scholar
  29. 29.
    Yang TJ, Janczen PA. Williams LF. Acid α-naphthyl acetate esterase: Presence of activity in bovine and human T and B lymphocytes. Immunol 38: 85–93, 1979.Google Scholar
  30. 30.
    Basso G. Cosito MG, Semenzato G. Pez- zutto A, Zanesco I.. Cytochemical study of thymocytes and T lymphocytes. Br J Haematol 44: 557–582, 1980.CrossRefGoogle Scholar
  31. 31.
    Bevan A, Burns GF, Gray I., Cawley JC. Cytochemistry of human T-cell subpopulations. Scand J Immunol 1 1: 223–233, 1980.CrossRefGoogle Scholar
  32. 32.
    Ferrarini M. Cadont A, Franzi AT, Ghig- lioti C. Leprini A. Zicca A. Grossi CE. Ultrastructure and cytochemistry of human peripheral blood lymphocytes: Similarities between the cells of the third population and Tg lymphocvtes. Eur I Immunol 10: 562–570, 1980.Google Scholar
  33. 33.
    Machin GA. Halper JP. Knowles DM. II Cytochemically demonstrable (i- glucuronidase activity in normal and neoplastic human lymphoid cells. Blood 56: 1111–1119, 1980.PubMedGoogle Scholar
  34. 34.
    Fehr J, Scherer O. Nonspecific esterase as a marker for human T-lymphocytes: Sequential studies during states of transient blood lymphocyte redistribution. Blut 44: 201–209, 1982.PubMedCrossRefGoogle Scholar
  35. 35.
    Catovsky D, Galetto J, Okos A. Miliani E, Galton DAG. Cytochemical profile of B and T leukacmic lymphocytes with special reference to acute lymphoblastic leukaemia. J Clin Pathol 27: 767–771, 1974.PubMedCrossRefGoogle Scholar
  36. 36.
    Flandrin D. Daniel NT. β-glucuronidasc activity in Sézary cells. Scand J Haematol 12: 23–31, 1974.PubMedCrossRefGoogle Scholar
  37. 37.
    Brouet JC, Flandrin G, Sasportes M, Preud’homme JL, Seligmann M. Chronic lymphocytic leukaemia of T-cell origin. Immunological and clinical evaluation in eleven patients. Lancet 2: 890–893, 1975.PubMedCrossRefGoogle Scholar
  38. 38.
    Catovsky D. T-cell origin of acid phosphatase positive lymphoblasts. Lancet 2: 327–328. 1975.PubMedCrossRefGoogle Scholar
  39. 39.
    Ritter J, Gaedicke G. Winkler K. Beckmann H, Lanbeck G. Possible T-cell origin of lymphoblasts in acid phosphatase-positive acute Ivmphatic leukemia. Lancet 2: 75, 1975.PubMedCrossRefGoogle Scholar
  40. 40.
    Brouet JC. Valensi F. Daniel MT. Flandrin G, Preud’homme JL, Seligmann M. Immunological classification of acute lympho-blastic leukaemia. Br J Haematol. 33: 319–328, 1976.PubMedCrossRefGoogle Scholar
  41. 41.
    Davey FR, Huntington SJ, MacCallum J, Macmath. Cytochemical reactions of normal and neoplastic lymphocytes. J Clin Pathol 30: 653–660. 1977.PubMedCrossRefGoogle Scholar
  42. 42.
    Kulenhampff J, Janossy MG, Greaves MF. Acid esterase in human lymphoid cells and leukaemia blasts: A marker for T lymphocytes. Br J Haematol 36: 235–244, 1977.Google Scholar
  43. 43.
    Pangalis GA, Yacaganas X. Fessas Ph. β-glucuronidase activity of lymph node imprints from malignant lymphomas and chronic lymphocytic leukemia. J Clin Pathol 30: 812–816, 1977.PubMedCrossRefGoogle Scholar
  44. 44.
    Andreewa P. Huhn D. Thiel E. Rodt H. Comparison of enzyme cytochemical findings and immunological marker investigations in acute Iymphatic leukemia (ALL). Blut 36: 299–305, 1978.PubMedCrossRefGoogle Scholar
  45. 45.
    Bearman RM, Pangalis GA. Rappaport H. Prolymphocyte leukemia: Clinical, histopathological and cytochemical observations. Cancer 42: 2360–2372, 1978.PubMedCrossRefGoogle Scholar
  46. 46.
    Catovsky D, Cherchi M, Greaves MF, Janossy G. Pain C. Kay HEM. The acid phosphatase reaction in acute lymphoblastic leukaemia. Lancet 1: 749–751, 1978.PubMedCrossRefGoogle Scholar
  47. 47.
    Catovsky D. Costello C. Cytochemistry of normal and leukaemic lymphocytes: A review. Basic Appl Cytochem 23: 255–270, 1979.Google Scholar
  48. 48.
    Knowles DM, Halper JP, Machin GA. Sherman W. Acid α-naphthyl acetate esterase activity in human neoplastic lymphoid cells: Usefulness as a T-cell marker. Am J Pathol 96: 257–278, 1979.PubMedGoogle Scholar
  49. 49.
    McKenna RW, Brynes RK. Nesbit ME. Bloomfield CD, Kersey JH, Spaniers E. Brunning RD. Cytochcmical profiles in acute lymphoblastic leukemia. Am J Pediatr Hematol Oncol 3: 263–275. 1979.CrossRefGoogle Scholar
  50. 50.
    Pinkus GS, Hargreaves HK, McLead JA. Nadler LM, Rosenthal DS. Said JW. α-naphthvl acetate esterase activity: A cytochemical marker for T Iymphocytes. Am J Pathol 97: 17–42, 1979.PubMedGoogle Scholar
  51. 51.
    Beck J D. Haghbin M. Wollner N, Mertelsmann R. Garrett T, Koziner B. Clarkson B. Miller D, Good RA, Gupta S. Subpopulations of human T lymphocytes: VI. Analysis of cell markers in acute lymphoblastic leukemia with special reference to Fc receptor expression on E-rosette-formmg blasts. Cancer 46: 45–49, 1980.PubMedCrossRefGoogle Scholar
  52. 52.
    Catovsky D. Leukocyte enzymes in leukaemia. In: Roath S, ed. Topical review in hacmatology. vol 1, Bristol: John Wright & Sons. 1980. pp 157–185.Google Scholar
  53. 53.
    Lilleyman JS, Britton JA, Laycock BJ, Sugden PJ. Sex and acid phosphatase in childhood non-T lymphoblastic leukaemia. J Clin Pathol 33: 151–154. 1980.PubMedCrossRefGoogle Scholar
  54. 54.
    Thiel E, Rodt H, Huhn D, Netzel B, Grosse-Wilde H, Ganeshaguru K. Thiertelder S. Multimarker classification of acute lymphoblastic leukemia Evidence for further T subgroups and evaluation of their clinical significance. Blood 56: 759–772, 1980.PubMedGoogle Scholar
  55. 55.
    Greaves MF. Analysis of the clinical and biological significance of lymphoid phenotypes in acute leukemia. Cancer Res 41: 4752–4766. 1981.PubMedGoogle Scholar
  56. 56.
    Pullen Dl, FallettaJM. Crist WM. Vogler LB. Dowell B. Humphrey GB. Blackstock R. Van Eys J. Cooper MD, Metzgar RS, Meydrech EF. Southwest Oncology Group experience with immunologic phenotvping in acute lymphocytic leukemia of childhood. Cancer Res 41: 4802–4809. 1981.PubMedGoogle Scholar
  57. 57.
    Crockard A. Chalmers D. Matutes E. Catovsky D. Cytochemistry of acid hydrolases in chronic B-andT-cell leukemias. Am J Clin Pathol 78: 437–444, 1982.PubMedGoogle Scholar
  58. 58.
    Yang K. Bearman RM, Pangalis GA, Zelman RJ, Rappaport H. Acid phosphatase and alpha naphthyl acetate esterase in neoplastic and nonneoplastic lymphocytes. Am J Clin Pathol 78: 141–149. 1982.PubMedGoogle Scholar
  59. 59.
    Kaplow IS. Simplified myeloperoxidase stain using benzidine dihydrochloride. Blood 36: 215–219, 1965.Google Scholar
  60. 60.
    Bessis M. Maigné J. Le diagnostic des variétés des peroxidases au microscope électronique: Son intérêt ses limites. Eur J Biol Res 15: 691–698, 1970.Google Scholar
  61. 61.
    Breton-Gorius J, Houssay D. Dreyfus B Partial myeloperoxidase deficiency in a case of preleukemia: 1. Studies of fine structure and peroxidase synthesis of promyelocytes. Br J Haematol 30: 273–278. 1975.PubMedCrossRefGoogle Scholar
  62. 62.
    Moloney WC. McPherson K. Fliegelman L. Esterase activity in leukocytes demonstrated by the use of naphthol AS-D chloroacetate substrate. J Histochem 8: 200–207, I960.Google Scholar
  63. 63.
    Leder I.D. Diagnostic experiences with the naphthol AS-D chloroacetate esterase reaction. Blut 21: 1–8, 1969.CrossRefGoogle Scholar
  64. 64.
    Löffler H. Zytochemischer Nachweis von unspezifischer esterase in Austricher. Klin Woch 39: 1220–1227. 1961.CrossRefGoogle Scholar
  65. 65.
    Schmalzl F, Braunsteiner H. Cytochemischc darstcllung von esterase aktivatäten in blut und knochenmarkszellen. Klin Woch 46, 642–650. 1968.CrossRefGoogle Scholar
  66. 66.
    Rozenszajn L, Leibovich M. Shohjam D. Epstein J. The esterase activity in megaloblasts: Leukaemic and normal haematopoietic cells. Br J Haematol 14: 605–610, 1968.Google Scholar
  67. 67.
    Shaw MT, Nordquist RE. Pure monocytic or histiomonocytic leukemia: A revised concept. Cancer 35: 208–214, 1975.PubMedCrossRefGoogle Scholar
  68. 68.
    Quiser W, Dietrich M, Finke J. Kubanek B, Neu G, Olischläger A. Heimpel H. Vergleich zwichen cytologischer von akuter leukämie. Klin Woch 50: 498–503, 1972.CrossRefGoogle Scholar
  69. 69.
    Barka T. Anderson PJ. Histochemical methods for acid phosphatase using hexazonium pararosanilin as coupler. J Histochem Cytochem 10: 741–753, 1962.CrossRefGoogle Scholar
  70. 70.
    Li CY. Yam LT, Lam KW. Studies of acid phosphatase iso-enzymes in human leukocytes: Demonstration of isoenzymes cell specificity. J Histochem Cytochem 18: 901–910, 1970.PubMedCrossRefGoogle Scholar
  71. 71.
    Pangalis GA, Kuhl W, Waldman SR, Beutler E. Acid hydrolases in normal B and T lymphocytes. Acta Haematol 59:285–292. 1978.Google Scholar
  72. 72.
    Pangalis G A. Nathwani BN, Rappaport H. Rosen RB. Acute lymphoblastic leukemia The significance of nuclear convolutions. Cancer 43: 551–557, 1979.PubMedCrossRefGoogle Scholar
  73. 73.
    Yam LT. Li CY. Crosby WH. Cytochemical identification of monocytes and granulocytes. Am J Clin Pathol 55: 283–290, 1971.Google Scholar
  74. 74.
    Pangalis GA. A semiquantitative cytochemical study of the lymphoid cells from benign and malignant lymphadenopathies. Doctoral thesis. University of Athens. 1974.Google Scholar
  75. 75.
    Catovsky D. Classification of the acute leukemia. Oral presentation at the combined clinical staff conference of the French-American-British cooperative group. National Institutes of Health, Bethesda, Md„ 1976.Google Scholar
  76. 76.
    Pangalis GA. Acid esterase, acid phosphatase and β-glucuronidase activity on adult leukemias. Leukemia Marker Conference Abstracts. Vienna 1981.Google Scholar
  77. 77.
    Scott RE, Horn RG. Ultrastructural aspects of neutrophils granulocyte development in humans. Lab Invest 292: 202–215. 1970.Google Scholar
  78. 78.
    Sainton DF, Ullyot JL, Farquhar MG. The development of neutrophilic polymor¬phonuclear leukocytes in human bone marrow. J Exp Med 134: 907–934, 1971.CrossRefGoogle Scholar
  79. 79.
    Rustin GJS, Wilson PD, Peters TJ. Studies on the subcellular localization of human neutrophil alkaline phosphatase. J Cell Sci 36: 401–402, 1979.PubMedGoogle Scholar
  80. 80.
    Kaplow LS. Leukocyte alkaline phosphatase cytochemistry: Applications and methods. Ann NY Acad Sci 155: 911–947, 1968.CrossRefGoogle Scholar
  81. 81.
    Okum DB. Tanaka KR. Leukocyte alkaline phosphatase. Am J Haematol 4: 293–299, 1978.CrossRefGoogle Scholar
  82. 82.
    Wachstein M. Alkaline phosphatase activity in normal and abnormal human blood and bone marrow cells. J Lab Clin Med 31: 1–17, 1946.PubMedGoogle Scholar
  83. 83.
    Tanaka KR, Valentine WN, Fredericks RE. Diseases or clinical conditions associated with low alkaline phosphatase. New Engl J Med 262: 912–918, 1960.PubMedCrossRefGoogle Scholar
  84. 84.
    Pangalis GA. Neutrophil alkaline phosphatase in idiopathic thrombocythemia. Unpublished observations.Google Scholar
  85. 85.
    Yam LT, Li CY, Lam KW. Tartrate resistant acid phosphatase isoenzyme in the reticulum cells of leukemic reticuloen- dotheliosis. New Engl J Med 284: 357–360, 1971.PubMedCrossRefGoogle Scholar
  86. 86.
    Yam LT, Li CY, Finkel HE. Leukemic reticuloendothcliosis: The role of tartrate-resistant acid phosphatase in diagnosis and splenectomy in treatment. Arch Int Med 130: 248–256, 1972.CrossRefGoogle Scholar
  87. 87.
    Katayama 1, Li CY, Yam LT. Histochemical study of acid phosphatase isoenzyme in leukemic reticuloendotheliosis. Cancer 29: 157–164, 1971.Google Scholar
  88. 88.
    Schaefer HH, Hellriegel KP. Zack J, Fischer R. Zytochemischcr Polymorphismus der sauren phosphatase bei Haarzell-Leukämie. Blut 365–370. 1975.Google Scholar
  89. 89.
    Higgy KE, Burns GF, Hayhoe FGJ. Identification of the hairy cells of leukaemic reticuloendotheliosis by an esterase method. Br J Haematol 38:99–106, 1978.Google Scholar
  90. 90.
    Pangalis GA, Roussou P. Kittas C. Fessas Ph. Hairy cell leukemia. Clinical and laboratory observations of 11 cases. Arch Hell Med Soc 7: 525–530. 1981.Google Scholar
  91. 91.
    Breton-Gorius J, Dreyfus B. Sultan C, Baseh A. D’Oliviera JG. Identification of circulating micromegakaryocytes in a case of refractory anemia: An electron microscopic cytochemical study. Blood 40: 453–463, 1972.Google Scholar
  92. 92.
    Quattrin N. Leukémies aiguës à basophiles. Nouv Rev Fr Hématol 13: 745–754, 1973.PubMedGoogle Scholar

Copyright information

© Martinus Nijhoff Publishing, Boston/The Hague/Dordrecht/Lancaster 1984

Authors and Affiliations

  • Gerassimos A. Pangalis

There are no affiliations available

Personalised recommendations