Nonlinear Electrodynamics in Cytoskeletal Protein Lattices

  • Stuart R. Hameroff
  • Steven A. Smith
  • Richard C. Watt


Nonlinear electrodynamic theories predict dynamic organization of biomolecular activities at all cellular levels: DNA, membranes, extracelluular glycoproteins, and the interconnecting cytoskeletal lattice. 1–5 Cytoskeletal lattice proteins including microtubules are particularly involved in dynamic regulation of intracellular movements and activities.6, 7This paper considers possibilities and implications of biological information processing due to coupling of Davydov solitons, Frohlich coherent oscillations and other nonlinear electrodynamic phenomena to conformational states of the grid-like polymer subunits of cytoskeletal microtubules.


Conformational State Neighbor Interaction Dynamic Organization Coherent Oscillation Nonlinear Electrodynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. F. Lawrence and W. R. Adey, Nonlinear wave mechanisms in interactions between excitable tissue and electromagnetic fields, Neurol Res 4: 15 (1982).MATHGoogle Scholar
  2. 2.
    A. S. Davydov, The migration of energy and electrons in biological systems, in: “Biology and quantum mechanics,” A. V. Holden and B. Winlow, eds., Springer Verlag, Berlin (1982).Google Scholar
  3. 3.
    H. Frohlich, Coherence in biological systems, Collective Phenomena 3: 139 (1981).Google Scholar
  4. 4.
    A. C. Scott, The laser-Raman spectrum of a Davydov soliton, Physics Letters 86A: 60 (1981).CrossRefGoogle Scholar
  5. 5.
    J. S. Clegg, Intracellular water, metabolism, and cellular architecture, Collective Phenomena 3: 289 (1981)Google Scholar
  6. 6.
    S. R. Hameroff and R. C. Watt, Information processing in microtubules, J Theor Biol 98: 549 (1982).CrossRefGoogle Scholar
  7. 7.
    K. R. Porter and J. B. Tucker, The ground substance of the living cell, Sci Am 244: 56 (1981).CrossRefGoogle Scholar
  8. 8.
    P. Dustin, “Microtubules,” Springer Verlag, Berlin (1978).Google Scholar
  9. 9.
    E. Lazarides, Intermediate filaments as mechanical integrators of cellular space, Nature 283: 249 (1980).ADSCrossRefGoogle Scholar
  10. 10.
    J. Atema, Microtubule theory of sensory transduction, J Theor Biol 38: 181 (1973).CrossRefGoogle Scholar
  11. 11.
    K. Roberts and J.S. Hyams, “Microtubules,” Academic Press, London (1979).Google Scholar
  12. 12.
    L. A. Amos and A. Klug, Arrangement of subunits in flagellar microtubules, J Cell Sci 14: 523 (1974).Google Scholar
  13. 13.
    J. Bryan and L. Wilson, Are cytoplasmic microtubules heteropolymers? Proc Natl Acad Sci, 68: 1762 (1971).ADSCrossRefGoogle Scholar
  14. 14.
    J. Bryan, Definition of three classes of binding sites in isolated microtubule crystals, Biochem 11: 2611 (1972).CrossRefGoogle Scholar
  15. 15.
    M. L. Shelanski, F. Gaskin, C. R. Cantor, Microtubule assembly in the absence of added nucleotides, Proc Natl Acad Sci 70: 765 (1973).ADSCrossRefGoogle Scholar
  16. 16.
    R. F. Luduena and D. O. Woodward, Isolation and partial characterization of α and β tubulin from outer doublets of sea-urchin sperm and microtubules of chick embryo brain, Proc Natl Acad Sci 70: 3594 (1973).ADSCrossRefGoogle Scholar
  17. 17.
    R. F. Luduena and D. O. Woodward, α and β tubulin: separation and partial sequence analysis, Ann NY Acad Sci 253: 272 (1975).ADSCrossRefGoogle Scholar
  18. 18.
    G. G. Borisy and E. W. Taylor, The mechanism of action of colchicine: colchicine binding to sea urchin eggs and the mitotic apparatus, J Cell Biol 34: 535 (1967).CrossRefGoogle Scholar
  19. 19.
    H. Stebbings and C. Hunt, The nature of the clear zone around microtubules, Cell Tissue Res 227: 609 (1982).CrossRefGoogle Scholar
  20. 20.
    R. G. Burns, Spatial organization of the microtubule associated proteins of reassembled brain microtubules, J Ultrastruct Res 65: 73 (1978).CrossRefGoogle Scholar
  21. 21.
    J. C. Paulson and W. O McClure, Microtubules and axoplasmic transport, Brain Res 73: 333 (1974).CrossRefGoogle Scholar
  22. 22.
    S. Ochs and N. Ranish, Characteristics of the fast transport system in mammalian nerve fibers, Neurobiol 1: 247 (1969).CrossRefGoogle Scholar
  23. 23.
    M. Singer, Neurotrophic control of limb regeneration in newts, Ann NY Acad Sci 228: 308 (1974).ADSCrossRefGoogle Scholar
  24. 24.
    M. Jacobs, Tubulin nucleotide reactions and their role in microtubule assembly and dissociation, Ann NY Acad Sci 253: 562 (1975).ADSCrossRefGoogle Scholar
  25. 25.
    M. Jacobs and M. Caplow, Microtubular protein reaction with nucleotides, Biochem Biophys Res Commun 68: 127 (1976).CrossRefGoogle Scholar
  26. 26.
    S. P. Layne and A. C. Scott, An hypothesis of barbiturate action mediated via membrane and cytoskeletal proteins, in: “The Neurobiology of Pain,” A. V. Holden and B. Winlow, eds., Springer Verlag, Berlin (in press).Google Scholar
  27. 27.
    J. M. Hyman, D. W. McLaughlin, and A. C. Scott, On Davydov’s alpha-helix soliton, Physica 30: 23 (1981).Google Scholar
  28. 28.
    A. S. Davydov, The theory of contractions of proteins under their excitation, J Theor Biol 38: 559 (1973).CrossRefGoogle Scholar
  29. 29.
    R. Weisenberg, The role of nucleotides in microtubule assembly, Ann NY Acad Sci 253: 573 (1975).ADSCrossRefGoogle Scholar
  30. 30.
    R. C. Weisenberg, W. J. Deery, Role of nucleotide hydrolysis in microtubule assembly, Nature 263: 792 (1976).ADSCrossRefGoogle Scholar
  31. 31.
    M. Ventilla, C. R. Cantor, and M. Shelanski, A circular dichroism study of microtubule protein, Biochemistry 11: 1554 (1972).CrossRefGoogle Scholar
  32. 32.
    H. Frohlich, Long range coherence and energy storage in biological systems, Int J Quant Chem II: 641 (1968).ADSCrossRefGoogle Scholar
  33. 33.
    H. Frohlich, The extraordinary dielectric properties of biological materials and the action of enzymes, Proc Natl Acad Sci 72: 4211 (1975).ADSCrossRefGoogle Scholar
  34. 34.
    H. Frolich, Long-range coherence and the action of enzymes, Nature 228: 1093 (1970).ADSCrossRefGoogle Scholar
  35. 35.
    E. Del Giuduce, S. Doglia, and M. Milani, Self-focusing of Frohlich waves and cytoskeleton dynamics, Physics Letters 90A: 104 (1982).CrossRefGoogle Scholar
  36. 36.
    E. Del Giudice, S. Doglia, and M. Milani, Order and structures in living systems. This volume.Google Scholar
  37. 37.
    J. von Neumann, “Collected Works,” A. H. Tareb, ed., 5:288 (1966).Google Scholar
  38. 38.
    M. Gardner, Mathematical Games, Sci Am 224: 112 (1971).CrossRefGoogle Scholar
  39. 39.
    S. Wolfram, Statistical mechanics in cellular automata, Caltech preprint CALT 68: 915 (1982).Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Stuart R. Hameroff
    • 1
  • Steven A. Smith
    • 2
  • Richard C. Watt
    • 1
  1. 1.Department of AnesthesiologyUniversity of Arizona Health Sciences CenterTucsonUSA
  2. 2.Computing DivisionLos Alamos National LaboratoriesLos AlamosUSA

Personalised recommendations