Skip to main content

Nonlinear Phenomena in a Dispersive System with Applications to Water Waves

  • Chapter
Nonlinear Electrodynamics in Biological Systems
  • 181 Accesses

Abstract

Significant progress in the understanding of nonlinear dynamics has been made in the past decade. New concepts, such as solitons, recurrence, chaotic motion and bifurcation have been discovered and related to important physical phenomena. The study of nonlinear deep-water waves has been both the cause and consequence of many of these novel concepts.

A survey of the recent developments in water waves is presented. This includes the nonlinear Schrödinger equation, the theoretical and experimental studies of envelope solitons and recurrence phenomena, stability analysis in two and three dimensions, discovery of new three-dimensional steady wave patterns and chaotic behavior in the long time evolution of a nonlinear wavetrain. Much of the mathematics and many of the techniques are related and applicable to other branches of science, including biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Benjamin, T. B., Feir, J. E. 1967. The disintegration of wavetrains on deep water. Part 1. Theory. J. Fluid Mech. 27: 417–30.

    Article  ADS  MATH  Google Scholar 

  • Chen, B., Saffman, P. G. 1980. Numerical evidence for the existence of new types of gravity waves of permanent form on deep water. Stud. Appl. Math. 62: 1–21.

    MathSciNet  MATH  Google Scholar 

  • Chu, V. H., Mei, C. C. 1971. The evolution of Stokes waves in deep water. J. Fluid Mech. 47: 337–51.

    Article  ADS  MATH  Google Scholar 

  • Crawford, D. R., Lake, B. M., Saffman, P. G., Yuen, H. C. 1981. Stability of weakly nonlinear deep-water waves in two and three dimensions. J. Fluid Mech. 105: 177–91.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Garabedian, P. R. 1965. Surface waves of finite depth. J. Analyse Math. 14: 161–69.

    Article  MathSciNet  MATH  Google Scholar 

  • Gardner, C. S., Greene, J. M., Kruskal, M. D., Miura, R. M. 1967. Method for solving the Korteweg-de Vries equation. Phys. Rev. Lett. 19: 1095–97.

    Article  ADS  MATH  Google Scholar 

  • Hasimoto, H., Ono, H. 1971. Nonlinear modulation of gravity waves. J. Phys. Soc. Jpn. 33: 805–11.

    Article  ADS  Google Scholar 

  • Lake, B. M., Yuen, H. C., Rungaldier, H., Ferguson, W. E. Jr. 1977. Nonlinear deep-water waves: Theory and experiment. Part 2: Evolution of a continuous wave train. J. Fluid Mech. 83: 49–74.

    Article  ADS  Google Scholar 

  • Lighthill, M. J. 1965. Contributions to the theory of waves in nonlinear dispersive systems. J. Inst. Math. Appl. 1: 269–306.

    Article  MathSciNet  Google Scholar 

  • Longuet-Higgins, M. S. 1978. The instabilities of gravity waves of finite amplitude in deep water. II. Subharmonics. Proc. R. Soc. London Ser. A 360: 489–505.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Longuet-Higgins, M. S., Smith, N. D. 1966. An experiment on third order resonant wave interactions. J. Fluid Mech. 25: 417–36.

    Article  ADS  Google Scholar 

  • Martin, D. U., Yuen, H. C. 1980. Quasi-recurring energy leakage in the two-space-dimensional nonlinear Schrodinger equation. Phys. Fluids 23: 881–83.

    Article  ADS  Google Scholar 

  • McGoldrick, L. F., Phillips, O. M., Huang, N. E., Hodgson, T. H. 1966. Measurements of third-order resonant wave interactions. J. Fluid Mech. 25: 437–56.

    Article  ADS  Google Scholar 

  • Meiron, D. I., Saffman, P. G., Yuen, H. C. 1982. Calculation of steady three-dimensional deep-water waves. J. Fluid Mech. 124: 109–121.

    Article  ADS  Google Scholar 

  • McLean, J. W., Ma, Y. C., Martin, D. U., Saffman, P. G., Yuen, H. C. 1981. A new type of three-dimensional instability of finite amplitude gravity waves. Phys. Rev. Lett. 46: 817–820.

    Article  MathSciNet  ADS  Google Scholar 

  • Peregrine, D. H., Thomas, G. P. 1979. Finite-amplitude deep-water waves on currents. Proc. R. Soc. London Ser. A 292: 371.

    MATH  Google Scholar 

  • Saffman, P. G., Yuen, H. C. 1978. Stability of a plane soliton to infinitesimal two-dimensional perturbations. Phys. Fluids 21: 1450–51.

    Article  ADS  MATH  Google Scholar 

  • Saffman, P. G., Yuen, H. C. 1980a. Bifurcation and symmetry breaking in nonlinear dispersive waves. Phys. Rev. Lett. 44: 1097–1100.

    Article  ADS  Google Scholar 

  • Saffman, P. G., Yuen, H. C., 1980b. A new type of three-dimensional deep-water wave of permanent form. J. Fluid Mech. 101: 797–808.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Saffman, P. G., Yuen, H. C. 1982. Three-dimensional deep-water waves. II. Calculation of steady symmetric wave patterns. Unpublished manuscript.

    Google Scholar 

  • Stokes, G. G. 1849. On the theory of oscillatory waves. Trans. Cambridge Philos. Soc. 8:441–55. Math. Phys. Pap. 1: 197–229.

    Google Scholar 

  • Su, M. Y. 1982. Three-dimensional deep-water waves. Part 1. Experimental measurement of skew and symmetric wave patterns. J. Fluid Mech. 124: 73–108.

    Article  ADS  Google Scholar 

  • Whitham, G. B. 1965. A general approach to linear and nonlinear dispersive waves using a Lagrangian. J. Fluid Mech. 22: 273–83.

    Article  MathSciNet  ADS  Google Scholar 

  • Whitham, G. B. 1967. Nonlinear dispersion of water waves. J. Fluid Mech. 27: 399–412.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Whitham, G. B. 1970. Two timing, variational principles and waves. J. Fluid Mech. 44: 373–95.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Yuen, H. C., Ferguson, W. E. Jr. 1978. Relationship between Benjamin-Fein instability and recurrence in the nonlinear Schrödinger equation. Phys. Fluids 21: 1275–78.

    Article  ADS  Google Scholar 

  • Yuen, H. C., Lake, B. M. 1975. Nonlinear deep water waves: Theory and experiment. Phys. Fluids 18: 956–60.

    Article  ADS  MATH  Google Scholar 

  • Zakharov, V. E. 1968. Stability of periodic waves of finite amplitude on the surface of a deep fluid. Zh. Prikl. Mekh. Tekh. Fiz. 1968, No. 2:86–94. Translated in J. Appl. Mech. Tech. Phys. 1968, No. 2: 190–94.

    Google Scholar 

  • Zakharov, V. E., Rubenchik, A. M. 1973. Instability of waveguides and solitons in nonlinear media. Zh. Eksp. Teor. Fiz. 65:997–1101. Translated in Sov. Phys. JETP 38: 494–500 (1974).

    Google Scholar 

  • Zakharov, V. E., Shabat, A. B. 1971. Exact theory of two-dimensional self-focusing and one-dimensional self-modulating waves in nonlinear media. Zh. Eksp. Teor. Fiz. 61:118–134. Translated in Sov. Phys. JETP 34: 62–69 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Yuen, H.C. (1984). Nonlinear Phenomena in a Dispersive System with Applications to Water Waves. In: Adey, W.R., Lawrence, A.F. (eds) Nonlinear Electrodynamics in Biological Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2789-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2789-9_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9720-8

  • Online ISBN: 978-1-4613-2789-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics