Skip to main content

Correlation of Non-Linear Rheological Properties of Polymer Melts With Weld-Line Strength

  • Chapter
Polymer Processing and Properties

Abstract

Weld-lines are formed either by the direct impingement of two flowing fronts or by the rejoining of a melt stream previously separated by an obstacle, such as an insert. In both cases, the elongational flow field at the interface causes molecular orientation that is predominantly along, rather than across the weld region. In general, the presence of weld-lines reduces mechanical strength and affects surface appearance of the molded part. Although the reduction in strength of a part as the result of a weld-line is a widely recognized problem, a review of the literature reveals that there is very little fundamental understanding of the mechanism which accounts for the formation of a weld-line.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. M. Hagerman, Plast. Eng. pg. 67, Oct. (1973).

    Google Scholar 

  2. P. Hubbauer, Plast. Eng., pg. 37, Aug (1973).

    Google Scholar 

  3. P. J. Cloud, F. McDowell and S. Gerakaris, Plast. Tech. pg. 48, Aug. (1976).

    Google Scholar 

  4. W. L. Krueger and Z. Tadmor, SPE 36th ANTEC, pg. 87 (1978).

    Google Scholar 

  5. S. Malguarnera and A. Manisali, SPE 38th ANTEC, pg. 124 (1980).

    Google Scholar 

  6. D. P. Isherwood, J. G. Williams and Y. T. Yap, Proc. 8th Intl. Cong. Rheol., 3: 37 (1980).

    CAS  Google Scholar 

  7. R. A. Worth, Poly. Eng. Sci., 20: 551 (1980).

    Article  CAS  Google Scholar 

  8. S. C. Malguarnera and A. Manisali, SPE 39th ANTEC, pg. 775 (1981).

    Google Scholar 

  9. S. C. Malguarnera and A. Minisali, Poly. Eng. Sci., 21: 586 (1981).

    Article  CAS  Google Scholar 

  10. G. Prall, Mod. Plast., pg. 118, Nov. (1970).

    Google Scholar 

  11. S. Y. Hobbs, Poly. Eng. Sci., 14: 621 (1974).

    Article  CAS  Google Scholar 

  12. R. C. Thamm, Rubber Chem. Tech., 50: 24 (1977).

    Article  CAS  Google Scholar 

  13. S. C. Malguarnera and D. C. Riggs, Poly. Plast. Technol. Eng. 17: 193 (1981).

    Article  CAS  Google Scholar 

  14. Z. Tadmor, J. Appl. Poly. Sci., 18: 1753 (1974).

    Article  CAS  Google Scholar 

  15. S. Prager and M. Tirrell, J. Chem. Phys., 75: 5194 (1981).

    Article  CAS  Google Scholar 

  16. K. Jud, H. H. Kausch and J.G. Williams, J. Matl. Sci., 16: 204 (1981).

    Article  CAS  Google Scholar 

  17. R. P. Wool and K. M. O’Conner, J. Poly. Sci. Poly. Letters Ed., 20:7 (1982).

    Article  CAS  Google Scholar 

  18. H. H. Kausch and K. Jud, Plast. & Rubber Proc. & Appl. 2: 265 (1982).

    CAS  Google Scholar 

  19. H. H. Kausch, IUPAC Macromolecules, Ed. H. Benort and P. Rempp, Pergamon Oxford (1982).

    Google Scholar 

  20. R. P. Wool, ACS Poly. Preprints, 23: 62 (1982).

    CAS  Google Scholar 

  21. P. G. deGennes, J. Chem. Phys. 55: 572 (1971).

    Article  Google Scholar 

  22. D. E. Hanson, Poly. Eng. Sci., 9: 405 (1969).

    Article  CAS  Google Scholar 

  23. B. Maxwell and F. Plumeri, SPE Tech. Papers 26: 282 (1980).

    Google Scholar 

  24. E. R. Howells and J. J. Benbow, Trans. J. Plast. Inst. 30: 240 (1962).

    CAS  Google Scholar 

  25. J. H. Prichard and K. F. Wissbrun, J. Appl. Poly. Sci., 13: 233 (1969).

    Article  CAS  Google Scholar 

  26. W. W. Graessley, J. Chem. Phys., 43: 2696 (1965).

    Article  CAS  Google Scholar 

  27. R. A. Stratton, J. Colloid & Interface Sci., 22: 517 (1966).

    Article  CAS  Google Scholar 

  28. R. A. Stratton and A. F. Butcher, J. Poly. Sci. Poly. Phys. Ed., 11:1747 (1973).

    CAS  Google Scholar 

  29. J. M. Dealy and Wm. K.-W. Tsang, J. Appl. Poly. Sci., 26: 1149 (1981).

    Article  CAS  Google Scholar 

  30. N. Minagawa and J. L. White, J. Appl. Poly. Sci., 20: 501 (1976).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Pisipati, R., Baird, D.G. (1984). Correlation of Non-Linear Rheological Properties of Polymer Melts With Weld-Line Strength. In: Astarita, G., Nicolais, L. (eds) Polymer Processing and Properties. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2781-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2781-3_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9716-1

  • Online ISBN: 978-1-4613-2781-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics