Ballistic and Dissipative Effects in Barrier-Limited Current Transport

  • William R. Frensley


Steady-state current transport over a simple parabolic energy barrier is studied in the context of dissipative and ballistic transport. The dissipative transport regime is described by the diffusion equation and the solution for the parabolic barrier is reviewed. The ballistic regime is treated using Euler’s equation of classical fluid mechanics. The procedure for solution of Euler’s equation for the parabolic barrier is described, and it is shown that the predicted current density is equal to approximately 1.52 times that predicted by the conventional thermionic emission theory.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. O. Bozler arid G. D. Alley, IEEE Trans. Electron Devices Ed-27 1128 (1980).Google Scholar
  2. 2.
    M. S. Shur and L. F. Eastman, IEEE Trans. Electron Devices ED-26 1677 (1979).Google Scholar
  3. 3.
    P. T. Landsberg, Proc. R. Soc. London, Ser. A 206, 463 (1951).ADSMATHCrossRefGoogle Scholar
  4. 4.
    S. Dushman, Rev. Mod. Phys. 2, 381 (1930).ADSCrossRefGoogle Scholar
  5. 5.
    H. A. Bethe, MIT Radiat. Lab. Rep. 43–21 (1942). For a published account, see S. M. Sze, “Physics of Semiconductor Devices”, (New York: Wiley), 255 (1981).Google Scholar
  6. 6.
    L. D. Landau and E. M. Lifshitz, Fluid Mechanics. (Reading: Addison-Wesley), 4 (1959).Google Scholar
  7. 7.
    W. R. Frensley, IEEE Electron Device Lett. EDL-1, 137 (1980).Google Scholar

Copyright information

© Plenum Press, New York 1925

Authors and Affiliations

  • William R. Frensley
    • 1
  1. 1.Central Research LaboratoriesTexas Instruments, Inc.DallasUSA

Personalised recommendations