Skip to main content

Hard Tissue Replacement Implants

  • Chapter
Biomaterials Science and Engineering

Abstract

When we try to replace a joint or help heal a fractured bone, it is logical that bone repairs should be made according to the best repair course that the tissues follow. Therefore, if they are healed faster when a compressive force or strain is exerted, then we should provide compression through an appropriate implant design.(1) Likewise, if compression is detrimental to healing of the wound, the opposite approach should be taken. Unfortunately, the effects of compressive or tensile forces on the repair of long bones are not fully understood. Worse yet, experimental results provide a completely opposite conclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Olenoid and G. Danckwardt-Lilliestrom, Fracture healing in compression osteosynthesis: An experimental study in dogs with an avascular, diaphyseal, intermediate fragment,Acta Orthop. Scand. Suppl137, 1–44, 1971.

    Google Scholar 

  2. J. Black, S. P. Richardson, R. U. Mattson, and S. R. Pollack, Haversian osteons: Longitudinal variation of internal structure,J. Biomed. Mater. Res. 14, 41–53, 1980.

    Article  Google Scholar 

  3. K. Pierkarski, A. M. Wiley, and J. E. Bartels, The effect of delayed internal fixation on fracture healing: An experimental study,Acta Orthop. Scand. 40, 543–551, 1970.

    Google Scholar 

  4. Richards Manufacturing Co.,Bone Screw Technical Information, Technical Publication 4167, Memphis, Tenn., 1980.

    Google Scholar 

  5. J. Schatzker, R. Sanderson, and J. P. Murnaghan, The holding power of orthopedic screwsin vivo, Clin. Orthop. Relat. Res. 108, 115–126, 1975.

    Article  Google Scholar 

  6. E. Koranyi, C. E. Bowman, C. D. Knecht, and M. Janssen, Holding power of orthopedic screws in bone,Clin. Orthop. Relat. Res. 72, 283–286, 1970.

    Google Scholar 

  7. J. Schatzker, J. G. Home, and G. Summer-Smith, The effect of movement on the holding power of screw in bone,Clin. Orthop. Relat. Res. 111, 257–262, 1975.

    Article  Google Scholar 

  8. J. Schatzker, J. G. Home, and G. Summer-Smith, The reaction of cortical bone to compression by screw threads,Clin. Orthop. Relat. Res. 111, 263–265, 1975.

    Article  Google Scholar 

  9. H. K. Uhthoff, Mechanical factors influencing the holding power of screws in compact bone,J. Bone Jt. Surg. 55B, 633–639, 1973.

    Google Scholar 

  10. J. A. Albright, T. R. Johnson, and S. Saha, Principles of internal fixation, in:Orthopedic Mechanics: Procedures and Devices, D. N. Ghista and R. Roaf (ed.), pp. 123–229, Academic Press, New York, 1978.

    Google Scholar 

  11. M. Laurence, M. A. R. Freeman, and S. A. V. Swanson, Engineering considerations in the internal fixation of fractures of the tibial shaft,J. Bone Jt. Surg. 51B, 754–768, 1969.

    Google Scholar 

  12. M. Allgower, P. Matter, S. M. Perren, and T. Ruedi,The Dynamic Compression Plate, DCP, p. 18, Springer-Verlag, Berlin, 1973.

    Google Scholar 

  13. A. A. White, Fracture treatment: The still unsolved problem,Clin. Orthop. Relat. Res. 106, 279–284, 1975.

    Article  Google Scholar 

  14. R. V. Lindholm, T. S. Lindholm, S. Toikkanen, and R. Leino, Effect of forced interfrag- mental movements on the healing of tibial fractures in rats,Acta Orthop. Scand. 40, 721–728, 1970.

    Google Scholar 

  15. H. K. Uhthoff and F. L. Dubuc, Bone structure changes in the dog under rigid internal fixation,Clin. Orthop. Relat. Res. 81, 165–170, 1971.

    Article  Google Scholar 

  16. S. L. Y. Woo, W. H. Akeson, R. D. Coutts, L. Rutherford, D. Doty, G. F. Gemmott, and D. Amiel, A comparison of cortical bone atrophy secondary to fixation with plates and large differences in bending stiffness,J. Bone Jt. Surg. 58A, 190–195, 1976.

    Google Scholar 

  17. S. L. Y. Woo, The relationships of changes in stress levels on long bone remodeling, in:Mechanical Properties of Bone, S. C. Cowin (ed.), pp. 107–129, American Society of Mechanical Engineers, New York, 1981.

    Google Scholar 

  18. Z. F. G. Jaworski, M. Liskova-Kiar, and H. K. Uhthoff, Regional disuse osteoporosis and factors influencing its reversal, in:Current Concepts of Internal Fixation of Fractures, H. K. Uhthoff (ed.), pp. 17–26, Springer-Verlag, Berlin, 1980.

    Google Scholar 

  19. A. Brown and J. C. D’Arcy, Internal fixation for supra-condylar fractures of the femur in the elderly patients,J. Bone Jt. Surg. 53B, 420–424, 1971.

    Google Scholar 

  20. H. M. Frost,Orthopedic Biomechanics, p. 444, Thomas, Springfield, III., 1973.

    Google Scholar 

  21. G. Kuntscher,Practice of Intramedullary? Nailing, Thomas, Springfield, III., 1967.

    Google Scholar 

  22. F. W. Rhinelander, Effects of medullary nailing on the normal blood supply of the diaphysial cortex, inA. A. O. S. Instructional Course Lectures, Volume 12, p. 161, Mosby, St. Louis, 1973.

    Google Scholar 

  23. F. W. Rhinelander, Circulation in bone, in:The Biochemistry’ and Physiology of Bone, G. H. Bourne (ed.), 2nd ed., Volume 2, pp. 1–77, Academic Press, New York, 1972.

    Google Scholar 

  24. R. Soto-Hall and N. P. McCloy, Cause and treatment of angulation of femoral intramedullary nails,Clin. Orthop. Relat. Res.2, 66–74, 1953.

    Google Scholar 

  25. W. C. Allen, G. Piotrowski, A. H. Burstein, and V. H. Frankel, Biomechanical principles of intramedullary fixation,Clin. Orthop. Relat. Res.60, 13–20, 1968.

    Article  Google Scholar 

  26. D. F. Williams and R. Roaf,Implants in SurgerySaunders, Philadelphia, 1973.

    Google Scholar 

  27. W. Kuehnegger, The systematic development of a cervical-thoracic-lumbo-sacral orthesis and its clinical applications, in:Orthopedic Mechanics: Procedures and Devices, D. N. Ghista and R. Roaf (ed.), pp. 231–286, Academic Press, New York, 1978.

    Google Scholar 

  28. P. R. Harrington, The treatment of scoliosis, correction and internal spine instrumentation,J. Bone Jt. Surg.44A, 591–610, 1962.

    Google Scholar 

  29. R. Roaf, A new plate for correcting scoliosis,Proc. R. Soc. Med.62, 272–273, 1969.

    Google Scholar 

  30. L. S. Lavine, I. Lutrin, and M. H. Shamos, Treatment of congenital pseudoarthrosis of the tibia with direct current,Clin. Orthop. Relat. Res.124, 69–74, 1977.

    Google Scholar 

  31. J. A. Spadaro, Electrically stimulated bone growth in animals and man,Clin. Orthop. Relat. Res.122, 325–332, 1977.

    Google Scholar 

  32. C. A. L. Bassett, R. J. Pawluk, and A. A. Pilla, Acceleration of fracture repair by electromagnetic fields—a surgically non-invasive method,Ann. N.Y. Acad. Sci.238, 242–263, 1974.

    Article  Google Scholar 

  33. C. T. Brighton, Z. B. Friedenberg, E. I. Mitchell, and R. E. Booth, Treatment of nonunion with constant direct current,Clin. Orthop. Relat. Res.124, 106–123, 1977.

    Google Scholar 

  34. J. Black and C. T. Brighton, Mechanisms of stimulation of osteogenesis by D. C. currect, in:Electrical Properties of Bone and Cartilage, C. T. Brighton, J. Black, and S. R. Pollack (ed.), pp. 215–224, Grune & Stratton, New York, 1979.

    Google Scholar 

  35. C. R. Hassler, E. F. Rybicki, R. B. Diegle, and L. C. Clark, Studies of enhanced bone healing via electrical stimuli,Clin. Orthop. Relat. Res.124, 9–19, 1977.

    Google Scholar 

  36. J. A. Spadaro, S. E. Chapin, and R. O. Becker, Cathode composition and electrical osteogenesis, 25th Annu. Orthop. Res. Soc. Meet., p. 85, San Francisco, 1979.

    Google Scholar 

  37. C. A. L. Bassett, A. A. Pilla, and R. J. Pawluk, A non-operative salvage of surgically resistant pseudoarthroses and nonunions by pulsing electromagnetic fields,Clin. Orthop. Relat. Res.124, 128–143, 1977.

    Google Scholar 

  38. B. Kummer, Biomechanics of the hip and knee joint, in:Advances in Hip and Knee Joint Technology, M. Schaldach and D. Hohmann (ed.), pp. 24–52, Springer-Verlag, Berlin, 1976.

    Google Scholar 

  39. J. P. Paul, Loading on normal hip and knee joints and joint replacements, in:Advances in Hip and Knee Joint Technology, M. Schaldach and D. Hohmann (ed.), pp. 53–70, Springer-Verlag, Berlin, 1976.

    Google Scholar 

  40. K. M. Sivash,Alloplasty of the Hip Joint: A Laboratory and Clinical Study, Medical Press, Moscow, 1967.

    Google Scholar 

  41. S. A. V. Swanson and M. A. R. Freeman (ed.),The Scientific Basis of Joint Replacement, Wiley, New York, 1977.

    Google Scholar 

  42. I. D. Oh, J. D’Errico, and W. H. Harris, Studies of strain in the proximal femur in simulated one-legged stance: The role of collar-calcar contact of THR in protection of the femoral stem, 24th Annu. Orthop. Res. Soc. Meet., p. 276, Dallas, 1978.

    Google Scholar 

  43. J. N. Wilson and J. T. Scales, Loosening of the total hip replacements with cement fixation,Clin. Orthop. Relat. Res.72, 145–160, 1970.

    Google Scholar 

  44. J. H. Dumbleton,Tribology of Natural and Artificial Joints, Elsevier, Amsterdam, 1981.

    Google Scholar 

  45. H. C. Amstutz, K. L. Markolf, G. M. McNeices, and T. A. W. Gruen, Loosening of total hip components: Cause and prevention, in:The Hip, pp. 102–116, Mosby, St. Louis, 1976.

    Google Scholar 

  46. J. Miller, D. L. Burke, J. W. Stachiewics, A. N. Ahmed, and L. C. Kelebay, Pathophysiology of loosening of femoral components in total hip arthroplasty, in:The Hip, pp. 64–86, Mosby, St. Louis, 1978.

    Google Scholar 

  47. P. S. Walker, Engineering principles of knee prostheses, in:Disorders of the Knee, A. J. Helfet (ed.), p. 262, Lippincott, Philadelphia, 1974.

    Google Scholar 

  48. A. S. Greenwald and M. B. Matejczyk, Knee joint mechanics and implant evaluation, in:Total Knee Replacement, A. A. Savastano (ed.), pp. 11–30, Appleton-Century-Crofts, New York, 1980.

    Google Scholar 

  49. A. A. Savastano, Indications for knee joint replacement, in:Total Knee Replacement, A. A. Savastano (ed.), pp. 31–39, Appleton-Century-Crofts, New York, 1980.

    Google Scholar 

  50. D. C. Mears,Materials and Orthopedic Surgery, Williams & Wilkins, Baltimore, 1979.

    Google Scholar 

  51. L. Marmor, The Marmor type of knee replacement, in:Total Knee Replacement, A. A. Savastano (ed.), pp. 107–123, Appleton-Century-Crofts, New York, 1980.

    Google Scholar 

  52. J. Charnley,The Charnley Load-Angle Inlay Arthroplasty of the Knee, Leeds, Thackey, 1975.

    Google Scholar 

  53. T. R. Waugh and P. M. Evanski, University of California, Irvine (UCI) knee replacement —Design, operative technique and results, in:Total Knee Replacement, A. A. Savastano (ed.), pp. 217–232, Appleton-Century-Crofts, New York, 1980.

    Google Scholar 

  54. J. N. Insall, The total condylar prosthesis, in:Total Knee Replacement, A. A. Savastano (ed.), pp. 83–105, Appleton-Century-Crofts, New York, 1980.

    Google Scholar 

  55. M, A. R. Freeman, The ICLH arthroplasty of the knee joint, in:Total Knee Replacement, A. A. Savastano (ed.), pp. 59–82, Appleton-Century-Crofts, New York, 1980.

    Google Scholar 

  56. G. Deane,The Deane Knee, p. 1, Institution of Mechanical Engineers, London, 1975.

    Google Scholar 

  57. D. A. Sonstegard, H. Kaufer, and L. S. Matthews, The spherocentric knee: Biomechanical testing and clinical trial,J. Bone Jt. Surg.59A, 602–616, 1977.

    Google Scholar 

  58. C. G. Attenborough, The Attenborough total knee replacement,J. Bone Jt. Surg.60B, 302–326, 1978.

    Google Scholar 

  59. B. Walldius, Arthroplasty of the knee—27 years experience, in:Total Knee Replacement, A. A. Savastano (ed.), pp. 195–216, Appleton-Century-Crofts, New York, 1980.

    Google Scholar 

  60. L. G. Shiers, Arthroplasty of the knee: Interim report of a new method,J. Bone Jt. Surg.42B, 31–39, 1960.

    Google Scholar 

  61. E. Englebrecht, A. Siegel, J. Rottger, and H. W. Buchholz, Statistics of total knee replacement: Partial and total knee replacement, design St. Georg. A review of a 4 year observation,Clin. Orthop. Relat. Res.120, 54–64, 1976.

    Google Scholar 

  62. A. Deburge, Guepar, “Guepar hinge prosthesis: Complications and results with two years” follow-up,Clin. Orthop. Relat. Res.120, 47–53, 1976.

    Google Scholar 

  63. Stanmore Total Knee Replacement, Booklet No. 169, Orthopedic Equipment Co, Bourbon, Ind., 1978.

    Google Scholar 

  64. C. O. Bechtol, Bechtol patello-femoral joint replacement system, Richards Manufacturing Co, Memphis, Tenn.

    Google Scholar 

  65. E. A. Salvati and J. N. Insall, The management of sepsis in total knee replacement, in:Total Knee Replacement, A. A. Savastano (ed.), pp. 49–58, Appleton-Century-Crofts, New York, 1980.

    Google Scholar 

  66. The Porous Coated Anatomic (PCA) Total Knee System, Orthopaedic Division, Howmedica, Inc., Rutherford, N.J., 1981.

    Google Scholar 

  67. P. Ducheyne, M. Martens, P. DeMeester, E. Aernoudt, and J. C. Mulier, Influence of a functional dynamic loading on bone ingrowth into surface pores of orthopaedic implants,J. Biomed. Mater. Res.11, 811–838, 1977.

    Article  Google Scholar 

  68. Richards Manufacturing Co,In vitrotesting of the RMC total knee, R&D Technical Monograph 3468, Memphis, Tenn, 1978.

    Google Scholar 

  69. H. J. Hicks, The mechanics of foot,J. Anat.87, 345–357, 1953.

    Google Scholar 

  70. D. G. Wright, S. M. Desai, and W. H. Henderson, Action of the subtalar and ankle-joint complex during the stance phase of walking,J. Bone Jt. Surg.46A, 361–382, 1964.

    Google Scholar 

  71. G. J. Sammarco, A. H. Burstein, and V. H. Frankel, Biomechanics of the ankle: A kinematic study,Orthop. Clin. N. Am.4, 75–96, 1973.

    Google Scholar 

  72. M. Pappas, F. F. Buechel, and A. F. DePalma, Cylindrical total ankle joint replacement: Surgical and biomechanical rationale,Clin. Orthop. Relat. Res.118, 82–92, 1976.

    Google Scholar 

  73. C. M. Goss (ed.),Gray’s Anatomy, p. 316, Lea & Febiger, Philadelphia, 1975.

    Google Scholar 

  74. C. S. Neer, Replacement arthroplasty for glenohumeral osteoarthritis,J. Bone Jt. Surg.56A, 1–13, 1974.

    Google Scholar 

  75. J. M. Fenlin, Jr., Total glenohumeral joint replacement,Orthop. Clin. N. Am.6, 565–583, 1975.

    Google Scholar 

  76. I. C. Clarke, T. A. W. Gruen, A. Sewhoy, D. Hirschowitz, S. Maki, and H. C. Amstutz, Problems in glenohumeral surface replacements—real or imagined?,Eng. Med.8, 161–175, 1979.

    Article  Google Scholar 

  77. B. F. Morrey and E. Y. S. Chao, Passive motion of the elbow joint,J. Bone Jt. Surg.58A, 501–508, 1976.

    Google Scholar 

  78. I. A. Kapandji,Physiology of the Joints, p. 81, Livingstone, Edinburgh, 1970.

    Google Scholar 

  79. Institution of Mechanical Engineers Report, Joint replacement in the upper limb,Eng. Med.6, 90–93, 1977.

    Article  Google Scholar 

  80. N. Gschwend, Design criteria, present indication, and implantation techniques for artificial knee joints, in:Advances in Artificial Hip and Knee Joint Technology?, M. Schaldach and D. Hohmann (ed.), pp. 90–114, Springer-Verlag, Berlin, 1976.

    Google Scholar 

  81. R. G. Volz, Total wrist arthroplasty: A new approach to wrist disability,Clin. Orthop. Relat. Res.128, 180–189, 1977.

    Google Scholar 

  82. Y. Youm, R. Y. McMurty, A. E. Flatt, and T. E. Gillespie, Kinematics of the wrist. I. An experimental study of radial ulnar deviation and flexion extension,J. Bone Jt. Surg.64A, 423–431, 1978.

    Google Scholar 

  83. H. C. Z. Meuli, Alloarthropstik des Handgelenks,Z. Orthop. Ihre Grenzgeb.113, 476–478, 1975.

    Google Scholar 

  84. A. B. Swanson,Flexible Implant Resection Arthroplasty in the Hand and Extremities, Mosby, St. Louis, 1973.

    Google Scholar 

  85. A. E. Flatt (ed.),The Care of Minor Hand Injuries, Mosby, St. Louis, 1972.

    Google Scholar 

  86. R. L. Linshend and E. Y. S. Chao, Biomechanical assessment of finger function in prosthetic joint design,Orthop. Clin. N. Am.4, 317–320, 1973.

    Google Scholar 

  87. R. I. Burton, Implant arthroplasty in the hand: An introduction,Orthop. Clin. N. Am.4, 313–316, 1973.

    MathSciNet  Google Scholar 

  88. J. B. Park and K. Margraf, Interfacial shear stress strength of implant/intramedullary bone in geese, in:Biocompatible Polymers, Metals, and Composites, M. Szycher (ed.), Chapter 28, Technomic, Lancaster, Pa., 1982.

    Google Scholar 

  89. E. E. Frisch, Functional considerations in implant design, Proceedings of the First Southern Biomedical Engineering Conference, S. Saha (ed.), pp. 299–304, Pergamon Press, Elmsford, N.Y., 1982.

    Google Scholar 

  90. P. A. Schnitman and L. B. Schulman (ed.),Dental Implants: Benefits and Risk, NIH-Harvard Consensus Development Conference, NIH Publication 81-1531, 1980.

    Google Scholar 

  91. D. E. Grenoble and D. Voss, Materials and designs for implant dentistry,Biomater. Med. Devices Artif. Organs 4, 133–169, 1976.

    Google Scholar 

  92. J. E. Lemons, Biomaterials science protocols for clinical investigations on porous alumina ceramic and vitreous carbon implants,J. Biomed. Mater. Res. Symp.4, 9–16, 1975.

    Article  Google Scholar 

  93. E. D. McCoy, Risk of vitreous carbon implants, in:Dental Implants: Benefits and Risk, P. A. Schnitman and L. B. Schulman (ed.), NIH-Harvard Consensus Development Conference, pp. 211–221, NIH Publication 81–1531, 1980.

    Google Scholar 

  94. K. K. Kapur, Benefit and risk of blade implants: A critique, in:Dental Implants: Benefits and Risk, P. A. Schnitman and L. B. Schulman (ed.), NIH-Harvard Consensus Development Conference, pp. 305–314, NIH Publication 81–1531, 1980.

    Google Scholar 

  95. A. N. Cranin, P. A. Schnitman, M. F. Rabkin, and T. Dennison, Alumina and zirconium coated Vitallium oral endosteal implants in beagles,J. Biomed. Mater. Res. Symp. 9, 257–262, 1975.

    Article  Google Scholar 

  96. J. N. Kent, C. A. Homsy, B. D. Gross, and E. C. Hinds, Pilot studies of a porous implant in dentistry and oral surgery,J. Oral Surg.30, 608–615, 1972.

    Google Scholar 

  97. H. S. Shim, The strength of LTI carbon dental implants,J. Biomed. Mater. Res.11, 435–445, 1977.

    Article  Google Scholar 

  98. S. F. Hulbert, J. N. Kent, J. C. Bokros, H. S. Shim, and O. M. Reed, Design and evaluation of LTI-Si carbon endosteal implants,Oral Implant.6, 79–94, 1975.

    Google Scholar 

  99. T. D. Driskell and A. L. Heller, Clinical use of aluminum oxide endosseous implants,Oral Implant.7, 53–76, 1977.

    Google Scholar 

  100. W. Schulte, C. M. Busing, B. D’Hoedt, and G. Heinke, Endosseous implants of aluminum oxide ceramics: A 5 year study in humans, in:Implantology and Biomaterials in Stomatology, H. Kawahara (ed.), pp. 157–167, Ishiyakn, Tokyo, 1980.

    Google Scholar 

  101. A. Sawa, A. Fujisawa, A. Yamagami, U. Tsunosue, K. Hoshino, H. Agariguchi, F. Ozawa, I. Kuroyama, S. Shimodaira, M. Chin, and T. Wada, Statistical study of the clinical cases using ceramic implants, in:Implantology and Biomaterials in Stomatology, H. Kawahara (ed.), pp. 141–150, Ishiyakn, Tokyo, 1980.

    Google Scholar 

  102. A. M. Weinstein, S. D. Cook, J. J. Klawitter, L. A. Weinberg, and M. Zide, An evaluation of ion-textured aluminum oxide dental implants,J. Biomed. Mater. Res.15, 749–756, 1981.

    Article  Google Scholar 

  103. S. O. Young, J. B. Park, G. H. Kenner, R. R. Moore, B. R. Meyers, and B. W. Sauer, Dental implant fixation by electrically mediated process. I. Interfacial strength,Biomater. Med. Devices Artif. Organs 5, 111–126, 1978.

    Google Scholar 

  104. J. B. Park, S. O. Young, G. H. Kenner, A. F. von Recum, B. R. Meyers, and R. R. Moore, Dental implant fixation by electrically mediated process. II. Tissue ingrowth,Biomater. Med. Devices Artif. Organs 5, 291–301, 1978.

    Google Scholar 

  105. W. J. Whatley, J. B. Park, G. H. Kenner, and A. F. von Recum, The effects of load on electrically stimulated porous dental implants, in:Implantology’ and Biomaterials in Stomatology, H. Kawahara (ed.), pp. 173–179, Ishiyakn, Tokyo, 1980.

    Google Scholar 

  106. L. Gettleman, D. Nathanson, R. L. Myerson, and M. Hodosh, Porous heat cured poly(methyl methacrylate) for dental implants,J. Biomed. Mater. Res. Symp. 6, 243–249, 1975.

    Article  Google Scholar 

  107. I. A. Small, Benefit and risk of mandibular staple bone plates, in:Dental Implants: Benefits and Risk, P. A. Schnitman and L. B. Schulman (ed.), NIH-Harvard Consensus Development Conference, pp. 139–151, NIH Publication 81–1531, 1980.

    Google Scholar 

  108. N. I. Goldberg, Risk of subperiosteal implants, in:Dental Implants: Benefits and Risk, P. A. Schnitman and L. B. Schulman (ed.), NIH-Harvard Consensus Development Conference, pp. 89–95, NIH Publication 81–1531, 1980.

    Google Scholar 

  109. R. L. Bodine and R. T. Yanase, Benefit of subperiosteal implants, in:Dental Implants: Benefits and Risk, P. A. Schnitman and L. B. Schulman (ed.), NIH-Harvard Consensus Development Conference, pp. 75–85, NIH Publication 81–1531, 1980.

    Google Scholar 

Bibliography

  • M. Allgower, P. Matter, S. M. Perren, and T. Ruedi,The Dynamic Compression Plate, DCP, Springer-Verlag, Berlin, 1973.

    Google Scholar 

  • C. O. Bechtol, A. B. Ferguson, and P. G. Laing,Metals and Engineering in Bone and Joint Surgery, Ballière, Tindall & Cox, London, 1979.

    Google Scholar 

  • J. Black and J. H. Dumbleton (ed.),Clinical Biomechanics: A Case History Approach, Churchill Livingstone, Edinburgh, 1981.

    Google Scholar 

  • J. Charnley,Acrylic Cement in Orthopedic Surgery, Livingstone, Edinburgh, 1970.

    Google Scholar 

  • J. Charnley,Low Friction Arthroplasty of the Hip, Springer-Verlag, Berlin, 1979.

    Google Scholar 

  • A. N. Cranin (ed.),Oral Implantology, Thomas, Springfield, III., 1970.

    Google Scholar 

  • J. H. Dumbleton,Tribology of Natural and Artificial Joints, Elsevier, Amsterdam, 1981.

    Google Scholar 

  • J. H. Dumbleton and J. Black,An Introduction to Orthopedic Materials, Thomas, Springfield, III., 1975.

    Google Scholar 

  • N. S. Eftekhar,Principles of Total Hip Arthroplasty, Mosby, St. Louis, 1978.

    Google Scholar 

  • A. E. Flatt (ed.),The Care of Minor Hand Injuries, Mosby, St.Louis, 1972.

    Google Scholar 

  • V. H. Frankel and A. H. Burstein,Orthopedic Biomechanics, Lea & Febiger, Philadelphia, 1971.

    Google Scholar 

  • H. M. Frost,Orthopedic Biomechanics, Thomas, Springfield, III., 1973.

    Google Scholar 

  • D. N. Ghista and R. Roaf (ed.),Orthopedic Mechanics: Procedures and Devices, Academic Press, New York, 1978.

    Google Scholar 

  • N. Gschwend, Design criteria, present indication, and implantation techniques for artificial knee joints, in:Advances in Artificial Hip and Knee Joint Technology, M. Schaldach and D. Hohmann (ed.), pp. 90–114, Springer-Verlag, Berlin, 1976.

    Google Scholar 

  • G. Kuntscher,The Practice of Intramedullary Nailing, Thomas, Springfield, III., 1947.

    Google Scholar 

  • D. C. Mears,Materials and Orthopedic SurgeryWilliams & Wilkins, Baltimore, 1979.

    Google Scholar 

  • J. B. Park,Biomaterials: An Introduction, Plenum Press, New York, 1979.

    Google Scholar 

  • H. K. Uhthoff (ed.),Current Concepts of Internal Fixation of Fractures, Springer-Verlag, Berlin, 1980.

    Google Scholar 

  • A. A. Savastano (ed.),Total Knee Replacement, Appleton-Century-Crofts, New York, 1980.

    Google Scholar 

  • M. Schaldach and D. Hohmann (ed.),Advances in Artificial Hip and Knee Joint Technology, Springer-Verlag, Berlin, 1976.

    Google Scholar 

  • P. A. Schnitman and L. B. Schulman (ed.),Dental Implants: Benefits and Risk, NIH-Harvard Consensus Development Conference, NIH Publication 81-1531,1980.

    Google Scholar 

  • S. A. V. Swanson and M. A. R. Freeman (ed.),The Scientific Basis of Joint Replacement, Wiley, New York, 1977.

    Google Scholar 

  • A. R. Taylor,Endosseous Dental Implants, Butterworths, London, 1970.

    Google Scholar 

  • C. S. Venable and W. C. Stuck,The Internal Fixation of Fractures, Thomas, Springfield, III., 1947.

    Google Scholar 

  • D. F. Williams, (ed.),Compatibility of Implant Materials, Sector, London, 1976.

    Google Scholar 

  • D. F. Williams and R. Roaf,Implants in Surgery, Saunders, Philadelphia, 1973.

    Google Scholar 

  • D. F. Williams (ed.),Fundamental Aspects of Biocompatibility, Volumes 1 and 2, CRC Press, Boca Raton, Fla., 1981.

    Google Scholar 

  • V. Wright (ed.),Lubrication and Wear in Joints, Lippincott, Philadelphia, 1969.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Park, J.B. (1984). Hard Tissue Replacement Implants. In: Biomaterials Science and Engineering. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2769-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2769-1_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9710-9

  • Online ISBN: 978-1-4613-2769-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics