• J. Kenneth Hoober
Part of the Cellular Organelles book series (CORG)


The astrophysicists tell us that the universe was created about 16 billion years ago. The visible universe contains slightly more than 1050 metric tons (1056g) of material. Since matter was created from energy (M = E/c2), according to the current concept of the origin of the universe, rough calculations indicate that creation was initiated by an outburst of energy in excess of 1070 J. Our minds are unable to comprehend the magnitude of this quantity, yet every thoughtful person must ponder its source.


Photosynthetic Organism Living Thing Ferrous Salt Rough Calculation Nuclear Fusion Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Baes C. F., Jr., Goeller, H. E., Olson, J. S. and Rotty, R. M. (1977) Carbon dioxide and climate: The uncontrolled experiment, Am. Sci. 65:310–320.Google Scholar
  2. Barrow, J. D., and Silk, J. (1980) The structure of the early universe, Sci. Am. 242(4):118–128.CrossRefGoogle Scholar
  3. Bolin, B. (1977) Changes of land biota and their importance for the carbon cycle, Science 196:613–615.PubMedCrossRefGoogle Scholar
  4. Dickerson, R. E. (1978) Chemical evolution and the origin of life, Sci. Am. 239(3):70–86.PubMedCrossRefGoogle Scholar
  5. Doolittle, W. F. (1980) Revolutionary concepts in evolutionary cell biology, Trends Biochem Sci. 5:146–149.CrossRefGoogle Scholar
  6. Eckdahl, C. A., and Keeling, C. D. (1973) in Carbon and the Biosphere (G. M. Woodwell and E. V. Pecan, eds.)} AEC Technical Information Center}, Washington, DGoogle Scholar
  7. Fredrick, J. F., ed. (1981) Conference on origins and evolution of eukaryotic intracellular organelles, Ann. N. Y. Acad. Sci. 361.Google Scholar
  8. Hall, D. O. (1976) Photobiological energy conversion, FEBS Lett. 64:6–16.PubMedCrossRefGoogle Scholar
  9. Javoy, M., Pineau, F., and Allègre, C. J. (1982) Carbon geodynamic cycle, Nature (London) 300:171–173 (appended Nature 303:730-731).CrossRefGoogle Scholar
  10. Penzias, A. A. (1980) Nuclear processing and isotopes in the galaxy, Science 208:663–669.PubMedCrossRefGoogle Scholar
  11. Schimper, A. F. W. (1883) Uber die Entwickelung der Chlorophyllkörner und Farbkörper, Botanische Zeitung 41:105–114.Google Scholar
  12. Schopf, J. W. (1978) The evolution of the earliest cells, Sci. Am. 239(3):111–138.CrossRefGoogle Scholar
  13. Schwarz, R. M., and Dayhoff, M. O. (1978) Origins of prokaryotes, eukaroytes, mitochondria and chloroplasts, Science 199:395–403.CrossRefGoogle Scholar
  14. Stuiver, M. (1978) Atmospheric carbon dioxide and carbon reservoir changes, Science 199:253–258.PubMedCrossRefGoogle Scholar
  15. Woodwell, G. M., Whittaker R. H., Reiners, W. A., Likens, G. E., Delwiche, C. C., and Botkin, D. B. (1978) The biota and the world carbon budget, Science 199:141–146.PubMedCrossRefGoogle Scholar
  16. Yockey, H. P. (1977) A calculation of the probability of spontaneous biogenesis by information theory, J. Theoret. Biol. 76:377–398.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • J. Kenneth Hoober
    • 1
  1. 1.Temple University School of MedicinePhiladelphiaUSA

Personalised recommendations