Advertisement

On the Possible Significance of TCDD Receptor Based Assays in Attempts to Estimate Environmental Health Hazards

  • Jan Åke Gustafsson
  • Jan Carlstedt-Duke
  • Mikael Gillner
  • Lars-Arne Hansson
  • Bertil Högberg
  • Johan Lund
  • Göran Löfroth
  • Lorenz Poellinger
  • Rune Toftgård
Part of the Environmental Science Research book series (ESRH, volume 30)

Abstract

Several attempts have been made and are being made to correlate individual responsiveness to certain health hazards with individual differences in inducibility of aryl hydrocarbon hydroxylase (AHH) activity [1–5]. Our approach to this problem is to attempt to measure the concentration of the cytosolic receptor (the 2,3,7,8-tetrachlorodibenzo-p-dioxin or TCDD receptor) believed to be involved in induction of AHH [6], rather than to study the enzyme induction [7–13]. From the field of steroid hormonal receptors we know that we can predict the responsiveness of individual cancer patients to hormonal therapy by monitoring their tumor content of steroid receptors [14–18]. It does not seem unreasonable to suggest that, by analogy, we might be able to predict an individual’s responsiveness to certain toxic agents by assaying that individual’s levels of receptor for the particular toxic chemical under study.

Keywords

Polycyclic Aromatic Hydrocarbon Glucocorticoid Receptor Aryl Hydrocarbon Hydroxylase Progestin Receptor Human Mammary Carcinoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Ward, B. Paigen, K. Steenland, R. Vincent, J. Minowada, H. L. Gurtoo, P. Sartoti, and M. B. Havens, Aryl hydrocarbon hydroxylase in persons with lung or laryngeal cancer, Int. J. Cancer, 22: 384–389 (1978).CrossRefGoogle Scholar
  2. 2.
    T. L. McLemore, R. R. Martin, N. P. Wray, E. T. Cantrell, and D. L. Busbee, Dissociation between aryl hydrocarbon hydroxylase activity in cultured pulmonary macrophages and blood lymphocytes from lung cancer patients, Cancer Res., 38: 3805–3811 (1978).Google Scholar
  3. 3.
    R. E. Kouri, J. Oberdorf, D. J. Slomiany, and C. E. McKinney, A method for detecting aryl hydrocarbon hydroxylase activities in cryopreserved human lymphocytes, Cancer Letters, 14: 29–40 (1981).CrossRefGoogle Scholar
  4. 4.
    B. Paigen, E. Ward, A. Reilly, L. Houten, H. L. Gurtoo, J. Minowada, K. Steenland, M. B. Havens, and P. Sartori, Seasonal variation of aryl hydrocarbon hydroxylase activity in human lymphocytes, Cancer Res., 41: 2757–2761 (1981).Google Scholar
  5. 5.
    T. L. McLemore, R. R. Martin, N. P. Wray, E. T. Cantrell, and D. L. Busbee, Reassessment of the relationship between aryl hydrocarbon hydroxylase and lung cancer, Cancer, 48: 1438–1443 (1981).CrossRefGoogle Scholar
  6. 6.
    A. Poland, E. Glover, and A. Kende, Stereospecific, high affinity binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin by hepatic cytosol. Evidence that the binding species is receptor for induction of aryl hydrocarbon hydroxylase, J. Biol. Chem., 251: 4936–4946 (1976).Google Scholar
  7. 7.
    J. Carlstedt-Duke, G. Elfström, M. Snochowski, B. Högberg, and J.- Å. Gustafsson, Detection of the 2,3,7,8-tetrachlorodibenzo- p-dioxin (TCDD) receptor in rat liver by isoelectric focusing in polyacrylamide gels, Toxicol. Lett., 2: 365–373 (1978).CrossRefGoogle Scholar
  8. 8.
    J. M. B. Carlstedt-Duke, G. Elfström, B. Högberg, and J.-Å. Gustafsson, Ontogeny of the rat hepatic receptor for 2,3,7,8- tetrachlorodibenzo-p-dioxin and its endocrine indpendence, Cancer Res., 39: 4653–4656 (1979).Google Scholar
  9. 9.
    J. M. B. Carlstedt-Duke, Tissue distribution of the receptor for 2,3,7,8-tetrachlorodibenzo-p-dioxin in the rat, Cancer Res., 39: 3172–3176 (1979).Google Scholar
  10. 10.
    J. Carlstedt-Duke, M. Gillner, L.-A. Hansson, R. Toftgård, S. Gustafsson, B. Högberg, and J.-Å. Gustafsson, The molecular basis for the induction of aryl hydrocarbon hydroxylase: characteristics of the receptor protein for 2,3,7,8-tetrachlorodi- benzo-p-dioxin (TCDD), in: Biochemistry, Biophysics, and Regulation of Cytochrome P–450 (J.-Å. Gustafsson et al., eds.), pp. 147, Elsevier/North-Holland Biomedical Press (1980).Google Scholar
  11. 11.
    J. M. B. Carlstedt-Duke, U.-B. Harnemo, B. Högberg, and J.-Å. Gustafsson, Interaction of the hepatic receptor protein for 2,3,7,8-tetrachlorodibenzo-p-dioxin with DNA, Biochim. Biophys. Acta, 672: 131–141 (1981).Google Scholar
  12. 12.
    L. Poellinger, R. N. Kurl. J. Lund, M. Gillner, J. Carlstedt-Duke, B. H5gberg, and J.-Å. Gustafsson, High-affinity binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin in cell nuclei from rat liver, Biochim. Biophys. Acta, 714: 516–523 (1982).Google Scholar
  13. 13.
    J. Lund, R. N. Kurl, L. Poellinger, and J.- Å. Gustafsson, Cytosolic and nuclear binding proteins for 2,3,7,8-tetrachloro- dibenzo-p-dioxin in the rat thymus, Biochim. Biophys. Acta, 716: 16–23 (1982).Google Scholar
  14. 14.
    E. V. Jensen, B. E. Block, S. Smith, K. Kyser, and E. R. DeSombre, Estrogen receptors and breast cancer response to adrenalectomy, NCI Monograph-Prediction of responses in cancer therapy, 34: 55–61 (1971).Google Scholar
  15. 15.
    W. L. McGuire and G. C. Chamness, Studies on the estrogen receptor in breast cancer, in: Advances in Experimental Medicine and Biology (B. W. O’Malley and A. R. Means, eds.), Plenum Press, New York, 36:113136 (1973).Google Scholar
  16. 16.
    Ö. Wrange, B. Nordenskjöld, C. Silfverswärd, P. O. Granberg, and J.-Å. Gustafsson, Isoelectric focusing of estradiol receptor protein from human mammary carcinoma — a comparison to sucrose gradient analysis, Europ. J. Cancer. 12: 695–700 (1976).CrossRefGoogle Scholar
  17. 17.
    Ö. Wrange, B. Nordenskjöld, and J.-Å. Gustafsson, Cytosol estradiol receptor in human mammary carcinoma: an assay based on isoelectric focusing in polyacrylamide gel, Analytical Biochemistry, 85: 461–475 (1978).CrossRefGoogle Scholar
  18. 18.
    J.- Å. Gustafsson, Å. Pousette, and Ö. Wrange, Predictive tests in treatment of breast and prostatic carcinoma based on steroid receptor assays, Trends in Pharmacological Sciences, 1980, 279–281.Google Scholar
  19. 19.
    Ö. Wrange, J. Carlstedt-Duke, and J.-Å. Gustafsson, Purification of the glucocorticoid receptor from rat liver cytosol, J. Biol. Chem., 254: 9284–9290 (1979).Google Scholar
  20. 20.
    G. M. Ringold, Glucocorticoid regulation of mouse mammary tumor virus gene expression, Biochim. Biophys. Acta, 560: 487–508 (1979).Google Scholar
  21. 21.
    J. Carlstedt-Duke, J.- Å. Gustafsson, and Ö. Wrange, Formation and characteristics of hepatic dexamethasone-receptor complexes of different molecular weight, Biochim. Biophys. Acta, 497: 507–524 (1977).Google Scholar
  22. 22.
    Ö. Wrange and J.- Å. Gustafsson, Separation of the hormone- and DNA-binding sites of the hepatic glucocorticoid receptor by means of proteolysis, J. Biol. Chem., 253: 856–865 (1978).Google Scholar
  23. 23.
    J. Carlstedt-Duke, Ö. Wrange, E. Dahlberg, J.- Å. Gustafsson, and B. HSgberg, Transformation of the glucocorticoid receptor in rat liver cytosol by lysosomal enzymes, J. Biol. Chem., 254: 1537–1539 (1979).Google Scholar
  24. 24.
    S. Okret, J. Carlstedt-Duke, Ö. Wrange, K. CarlstrSm, and J.- Å. Gustafsson, Characterization of an antiserum against the gluco-corticoid receptor, Biochim. Biophys. Acta, 677: 205–219 (1981).Google Scholar
  25. 25.
    J. Carlstedt-Duke, S. Okret, Ö. Wrange, and J.- Å. Gustafsson, Immunochemical analysis of the glucocorticoid receptor: identification of a third domain separate from the steroid-binding and DNA-binding domains, Proc. Natl. Acad. Sci. USA, 79: 4260–4264 (1982).ADSCrossRefGoogle Scholar
  26. 26.
    S. Okret, Y.-W. Stevens, J. Carlstedt-Duke, Ö. Wrange, J.- Å. Gustafsson, and J. Stevens, Absence of a glucocorticoid receptor domain responsible for biological effects in glucocorticoid-resistant mouse lymphoma P1798, Cancer Res., 43: 3127–3131 (1983)Google Scholar
  27. 27.
    F. Payvar, Ö. Wrange, J. Carlstedt-Duke, S. Okret, J.- Å. Gustafsson, and K. R. Yamamoto, Purified glucocorticoid receptors bind selectively in vitro to a cloned DNA fragment whose transcription is regulated by glucocorticoids in vivo, Proc. Natl. Acad. Sci. USA, 78: 6628–6632 (1981).ADSCrossRefGoogle Scholar
  28. 28.
    J.- Å. Gustafsson, S. A. Gustafsson, B. Nordenskjöld, S. Okret, C. SilfvarswMrd, and Ö. Wrange, Estradiol receptor analysis in human breast cancer tissue by isoelectric focusing in poly- acrylamideBgel, Cancer Res., 38: 4225–4228 (1978).Google Scholar
  29. 29.
    S. Okret, Ö. Wrange, B. Nordenskjöld, C. Silfverswärd, and J.- Å. Gustafsson, Estrogen receptor assay in human mammary carcinoma with the synthetic estrogen llß-methoxy-17α-ethinyl- l,3,5(10)-estratriene-3,17ß-diol (R 2858), Cancer Res., 38:3904–3909 (1978).Google Scholar
  30. 30.
    N.-0. Theve, K. Carlstrom, J.- Å. Gustafsson, S. Gustafsson, B. Nordenskjöld, H. Sköldefors, and Ö. Wrange, Oestrogen receptors and peripheral serum levels of oestradiol-173 in patients with mammary carcinoma, Europ. J. Cancer, 14(1337–1340 (1978).CrossRefGoogle Scholar
  31. 31.
    H. Westerberg, B. Nordenskjöld, Ö. Wrange, J.- Å. Gustafsson, S. Humla, N. O. Theve, C. Silfverswärd, and P.-O. Granberg, Effect of antiestrogen therapy on human mammary carcinomas with different estrogen receptor contents, Europ. J. Cancer, 14: 619–622 (1978).CrossRefGoogle Scholar
  32. 32.
    C. Silfverswärd, J.- Å. Gustafsson, S. A. Gustafsson, B. Nordenskjöld, A. Wallgren, and Ö. Wrange, Estrogen receptor analysis on fine needle aspirates and on histologic biopsies from human breast cancer, Europ. J. Cancer, 16: 1351–1357 (1980).CrossRefGoogle Scholar
  33. 33.
    C. Silfverswärd, J.- Å. Gustafsson, S. A. Gustafsson, S. Humla, B. Nordenskjöld, A. Wallgren, and Ö. Wrange, Estrogen receptor concentrations in 269 cases of histologically classified human breast cancer, Cancer, 45: 2001–2005 (1980).CrossRefGoogle Scholar
  34. 34.
    Ö. Wrange, S. Humla, I. Ramberg, S. A. Gustafsson, L. Skoog, B. Nordenskjöld, and J. -L Gustafsson, Progestin-receptor analysis in human breast cancer cytosol by isoelectric focusing in slabs of polyacrylamide gel, J. Steroid Biochem., 14: 141–148 (1981).CrossRefGoogle Scholar
  35. 35.
    G. L. Greene, F. W. Fitch, and E. V. Jensen, Monoclonal antibodies to estrophilin: Probes for the study of estrogen receptors, Proc. Natl. Acad. Sci. USA, 77: 157–161 (1980).ADSCrossRefGoogle Scholar
  36. 36.
    G. L. Greene, C. Nolan, J. P. Engler, and E. V. Jensen, Monoclonal antibodies to human estrogen receptor, Proc. Natl. Acad. Sci. USA, 77: 5115–5119 (1980).ADSCrossRefGoogle Scholar
  37. 37.
    J.- Å. Gustafsson, P. Ekman, M. Snochowski, A. Zetterberg, A. Pousette, and B. Högberg, Correlation between clinical response to hormone therapy and steroid receptor content in prostatic cancer, Cancer Res., 38: 4345–4348 (1978).Google Scholar
  38. 38.
    J.- Å. Gustafsson, P. Ekman, Å. Pousette, M. Snochowski, and B. Högberg, Demonstration of a progestin receptor in human benign prostatic hyperplasia and prostatic carcinoma, Investigative Urology, 15: 361–366 (1978).Google Scholar
  39. 39.
    P. Ekman, M. Snochowski, E. Dahlberg, and J.- Å. Gustafsson, Steroid receptors in metastatic carcinoma of the human prostate, Europ. J. Cancer, 15: 257–262 (1979).CrossRefGoogle Scholar
  40. 40.
    P. Ekman, M. Snochowski, A. Zetterberg, B. Högberg, and J.- Å. Gustafsson, Steroid receptor content in human prostatic carcinoma and response to endocrine therapy, Ancer, 44: 1173–1181 (1979).Google Scholar
  41. 41.
    B. R. Rao and W. G. Wiest, Receptors for progesterone, Gynecol. Oncol., 2: 239–248 (1974).CrossRefGoogle Scholar
  42. 42.
    K. Pollow, M. Schmidt-Gollwitzer, and J. Nevinny-Stickel, Progesterone receptors in normal human endometrium and endometrial carcinoma, in: Progesterone receptors in normal and neoplastic tissues ( W. L. McGuire, J. P. Raynaud, and E. E. Baulieu, eds.), Raven Press, New York, 1977, 313–338.Google Scholar
  43. 43.
    M. E. Lippman, R. H. Halterman, B. G. Leventhal, S. Perry, and E. B. Thompson, Glucocorticoid-binding proteins in human acute lymphoblastic leukemic blast cells, J. Clin. Invest., 52: 1715–1725 (1973).CrossRefGoogle Scholar
  44. 44.
    J. Stevens, Y. W. Stevens, and R. L. Rosenthal, Characterization of cytosolic and nuclear glucocorticoid-binding components in human leukemic lymphocytes, Cancer Res., 39: 4939–4948 (1979).Google Scholar
  45. 45.
    L.-A. Hansson, S. A. Gustafsson, J. Carlstedt-Duke, G. Gahrton, B. Högberg, and J.- Å. Gustafsson, Quantitation of the cytsolic glucocorticoid receptor in human normal and neoplastic leukocytes using isoelectric focusing in polyacrylamide gel, J. Steroid Biochem., 14: 757–764 (1981).CrossRefGoogle Scholar
  46. 46.
    H. Bojar, K. Maar, and W. Staib, The endocrine background of human renal cell carcinoma, I. Binding of the hihgly potent progestin R 5020 by tumor cytosol., Urol. Int., 34: 302–311 (1979).CrossRefGoogle Scholar
  47. 47.
    G. Concolino, F. DiSilverio, A. Marocchi, and U. Bracci, Renal cancer steroid receptors: Biochemical basis for endocrine therapy, Eur. Urol., 5: 90–93 (1979).Google Scholar
  48. 48.
    A. Poland and E. Glover, Comparison of 2,3,7,8-tetrachlorodi-benzo-p-dioxin, a potent inducer of aryl hydrocarbon hydroxylase, with 3-methylcholanthrene, Mol. Pharmacol., 10: 349–359 (1974).Google Scholar
  49. 49.
    A. Poland and E. Glover, Chlorinated dibenzo-p-dioxins: potent inducers of δ-aminolevulinic acid synthetase and aryl hydrocarbon hydroxylase II. A study of the structure-activity relationship, Mol. Pharmacol., 9: 736–747 (1973).Google Scholar
  50. 50.
    A. P. Poland, E. Glover, J. R. Robinson, and D. W. Nebert, Genetic expression of aryl hydrocarbon hydroxylase activity, J. Biol. Chem., 249: 5599–5606 (1974).Google Scholar
  51. 51.
    G. W. Lucier, O. S. McDaniel, and G. E. R. Hook, Nature of the enhancement of hepatic uridine diphosphate glucuronyltransferase activity by 2,3,7,8-tetrachlorodibenzo-p-dioxin in rats, Biochem. Pharmacol., 24: 325–334 (1975).CrossRefGoogle Scholar
  52. 52.
    R. Kirsch, G. Fleischner, K. Kaminaka, and I. M. Arias, Structural and functional studies of ligandin, a major renal organic anion-binding protein, J. Clin. Invest., 55: 1009–1019 (1975).CrossRefGoogle Scholar
  53. 53.
    D. W. Nebert and H. V. Gelboin, Substrate-inducible microsomal aryl hydrocarbon hydroxylase in mammalian cell culture, II. Cellular responses during enzyme induction, J. Biol. Chem., 243: 6250–6261 (1968).Google Scholar
  54. 54.
    D. W. Nebert and H. V. Gelboin, The role of ribonucleic acid and protein synthesis in microsomal aryl hydrocarbon hydroxylase induction in cell culture. The independence of transcription and translation, J. Biol. Chem., 245: 160–168 (1970).Google Scholar
  55. 55.
    K. T. Kitchin and J. S. Woods, 2,3,7,8-tetrachlorodibenzo-p-dioxin induction of aryl hydrocarbon hydroxylase in female rat liver, Evidence for de novo synthesis of cytochrome P-448, Mol. Pharmacol., 14: 890–899 (1978).Google Scholar
  56. 56.
    D. A. Haugen, M. J. Coon, and D. W. Nebert, Induction of multiple forms of mouse liver cytochrome P-450. Evidence for genetically controlled de novo protein synthesis in response to treatment with 3-naphtoflavone or phenobarbitol, J. Biol. Chem., 251: 1817–1827 (1976).Google Scholar
  57. 57.
    P. E. Thomas, R. E. Kouri, and J. J. Hutton, The genetics of aryl hydrocarbon hydroxylase induction in mice: a single gene difference between C57BL/7J and DBA/2J, Biochem. Genet., 6: 157–168 (1972).CrossRefGoogle Scholar
  58. 58.
    D. W. Nebert and J. E. Gielen, Genetic regulation of aryl hydrocarbon hydroxylase induction in mice, Fed. Proc., 31: 1315–1325 (1972).Google Scholar
  59. 59.
    D. W. Nebert, F. M. Goujon, and J. E. Gielen, Aryl hydrocarbon hydroxylase induction by polycyclic hydrocarbons: simple autosomal dominant trait in the mouse, Nat. New Biol., 236: 107–110 (1972).Google Scholar
  60. 60.
    D. W. Nebert, S. S. Thorgeirsson, and G. H. Lamberg, Genetic aspects of toxicity during development, Environ. Health Perspect., 18: 35–45 (1976).CrossRefGoogle Scholar
  61. 61.
    A. Poland and E. Glover, Genetic expression of aryl hydrocarbon hydroxylase by 2,3,7,8-tetrachlorodibenzo-p-dioxin: evidence for a receptor mutation in genetically non-responsive mice, Mol. Pharmacol., 11: 389–398 (1975).Google Scholar
  62. 62.
    D. W. Nebert and H. V. Gelboin, The in vivo and in vitro induction of aryl hydrodarbon hydroxylase in mammalian cells of different species, tissues, strains, and developmental and hormonal states, Arch. Biochem. Biophys., 134: 76–89 (1969).CrossRefGoogle Scholar
  63. 63.
    B. A. Fowler, G. E. Hook, and G. W. Lucier, Tetrachlordibenzo-p-dioxin induction of renal microsomal enzyme systems: ultrastructural effects on pars recta (S3) proximal tubule cells of the rat kidney, J. Pharmacol. Exp. Ther., 203: 712–721 (1977).Google Scholar
  64. 64.
    R. E. Faith and J. A. Moore, Impairment of thymus-dependent immune functions by exposure of the developing immune system to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), J. Toxicol. Environ. Health, 3: 451–464 (1977).CrossRefGoogle Scholar
  65. 65.
    I. P. Lee and R. L. Dixon, Factors influencing reproduction and genetic toxic effects on male gonads, Environ. Health Perspect., 24: 117–127 (1978).CrossRefGoogle Scholar
  66. 66.
    B. Forsgren, P. Björk, K. Carlström, J.- Å Gustafsson, Å. Pousette, and B. Högberg, Purification and distribution of a major protein in rat prostate that binds estramustine, a nitro gen mustard derivative of estradiol-173, Proc. Natl. Acad. Sci. USA, 76: 3149–3153 (1979).ADSCrossRefGoogle Scholar
  67. 67.
    B. Forsgren, J.- Å. Gustafsson, Å. Pousette, and B. Högberg, Binding characteristics of a major protein in rat ventral prostate cytosol that interacts with estramustine, a nitrogen mustard derivative of 17β-estradiol, Cancer Res., 39:5155–5164 (1979).Google Scholar
  68. 68.
    P. Björk, B. Forsgren, J.- Å. Gustafsson, Å. Pousette, and B. Högberg, Partial characterization and quantitation of a human prostatic estramustine binding protein, Cancer Res., 42: 1935–1942 (1982).Google Scholar
  69. 69.
    J.- Å. Gustafsson, P. S’derkvist, T. Haaparanta, L. Busk, Å. Pousette, H. Glaumann, R. Toftgård, and B. Högberg, Induction of cytochrome P-450 and metabolic activation of mutagens in the rat ventral prostate, in: The Prostatic Cell: Structure and Function, Part B, Alan R. Liss, Inc., New York, 191–205 (1981).Google Scholar
  70. 70.
    J. C. Nunnink, A. H. L. Chuang, and E. Bresnick, The ontogeny of nuclear aryl hydrocarbon hydroxylase, Chem.-Biol. Interact., 22: 225–230 (1978).CrossRefGoogle Scholar
  71. 71.
    D. W. Nebert, F. M. Goujon, and J. E. Gielen, Aryl hydrocarbon hydroxylase induction by polycyclic hydrocarbons: simple automsomal dominant trait in the mouse, Nat. New. Biol., 236: 107–110 (1972).Google Scholar
  72. 72.
    L. W. Wattenberg, Studies of polycyclic hydrocarbon hydroxylases of the intestine possibly related to cancer: effect of diet on benzpyrene hydroxylase activity, Cancer, 28: 99–102 (1971).CrossRefGoogle Scholar
  73. 73.
    L. W. Wattenberg, W. D. Loub, K. L. Lam, and J. L. Speier, Dietary constituents altering the responses to chemical carcinogens, Fed. Proc., 35: 1327–1331 (1976).Google Scholar
  74. 74.
    G. Johansson, M. Gillner, B. Högberg, and J.- Å. Gustafsson, The TCDD receptor in rat intestinal mucosa and its possible dietary ligands, Nutrition and Cancer, 1982, 134–144.Google Scholar
  75. 75.
    J. N. Pitts, D. Grosjean, T. M. Mischke, V. Simmon, and D. Poule, Mutagenic activity of airborne particulate organic pollutants, Toxicol. Letters, 1: 65–70 (1977).CrossRefGoogle Scholar
  76. 76.
    R. Talcott and E. Wei, Airborne mutagens bioassayed in Salmonella typhimurium, J. Natl. Cancer Inst., 58: 449–451 (1977).Google Scholar
  77. 77.
    G. Löfroth, E. Hefner, I. Alfheim, and M. Møller, Mutagenic activity in photocopies, Science, 209: 1037–1039 (1980).ADSCrossRefGoogle Scholar
  78. 78.
    H. S. Rosenkranz, E. C. McCoy, D. R. Sanders, M. Butler, D. K. Kiriazides, and R. Mermelstein, Nitropyrenes: Isolation, identification, and reduction of mutagenic impurities in carbon black and toners, Science, 209: 1039–1043 (1980).ADSCrossRefGoogle Scholar
  79. 79.
    E. Agurell and G. Löfroth, Presence of various types of mutagenic impurities in carbon black detected by the Salmonealla/ microsome assay, in: Short-term Bioassays in the Analysis of Complex Environmental Mixtures III (M. D. Waters, S. S. Sandhu, J. Lewtas, L. Claxton, and S. Nesnow, eds.), Plenum Press, New York (in press).Google Scholar
  80. 80.
    L. Rudling, B. Ahling, and G. Löfroth, Chemical and biological characterization of emissions from combustion of wood and wood- chips in small furnaces and stoves, in: Residential Solid Fuels, Environmental Impacts and Solutions (J. A. Copper and D. Malek, eds.), Beaverton, OR: Oregon Graduate Center, 34–53 (1981).Google Scholar
  81. 81.
    J. N. Pitts, Jr., D. M. Lokensgard, W. P. Harger, T. S. Fisher, V. Mejia, J. J. Schuler, G. M. Scorziell, and Y. A. Katzenstein, Mutagens in diesel exhaust: Identification and direct activities of 6-nitrobenzo(a)pyrene, 9-nitroanthracene, 1-nitro- pyrene and 5H-phenanthro[4,5-bcd]pyran-5-one, Mut. Res. (in press).Google Scholar
  82. 82.
    D. Schuetzle, Sampling of vehicle emissions for chemical analysis and biological testing, Environ. Health Persp. (in press).Google Scholar
  83. 83.
    C. Y. Wang, M. S. Lee, C. M. King, and P. O. Warner, Evidence for nitroaromatics as direct-acting mutagens of airborne particles, Chemosphere, 9: 83–87 (1980).CrossRefGoogle Scholar
  84. 84.
    G. Löfroth, Comparison of the mutagenic activity in carbon particulate matter and in diesel and gasoline engine exhaust, in: Short-term Bioassays in the Analysis of Complex Environmental Mixtures II (M. D. Waters, S. S. Sandhu, J. Lewtas Huisingh, L. Claxton, and S. Newnow, eds.), Plenum Press, New York, 319–336 (1981).Google Scholar
  85. 85.
    J. N. Pitts, Jr., W. Harger, D. M. Lokensgard, D. R. Fitz,G. M. Scorziell, and V. Mejia, Diurnal variation in the mutagenicity of airborne particulate organic matter in California’s South Coast air basin, Mut. Res. (in press).Google Scholar
  86. 86.
    R. Mermelstein, D. K. Kiriazides, M. Butler, E. C. McCoy, and H. S. Rosenkranz, The extraordinary mutagenicity of nitro-pyrenes in bacteria, Mut. Res., 89: 187–196 (1981).CrossRefGoogle Scholar
  87. 87.
    E. C. McCoy, H. S. Rosenkranz, and R. Mermelstein, Evidence for the existence of a family of bacterial nitroreductases capable of activating nitrated polycyclics to mutagens, Environ. Mut., 3: 421–427 (1981).CrossRefGoogle Scholar
  88. 88.
    T. C. Pederson and J. S. Siak, The role of nitroaromatic compounds in the direct-acting mutagenicity of diesel particle extracts, J. Appl. Toxicol., 1: 54–60 (1981).CrossRefGoogle Scholar
  89. 89.
    R. Toftgärd, J. Carlstedt-Duke, R. Kurl, G. Löfroth, and J.- Å. Gustafsson, Compounds in urban air compete with [3H]2,3,7,8-tetrachlorodibenzo-p-dioxin for binding to the receptor protein, Chem.-Biol. Interact, 46: 335–346 (1983).CrossRefGoogle Scholar
  90. 90.
    T. Greibrokk, G. Löfroth, L. Nilsson, R. Toftgärd, J. Carlstedt-Duke, and J.- Å. Gustafsson, Nitroarenes: mutagenicity in the Ames Salmonella/microsome assay and affinity to the TCDD-re- ceptor protein, in: Toxicity of Nitroaromatic Compounds (D. E. Rickert, ed.), Hemisphere Publ. Corp., Washington, D.C. (in press).Google Scholar
  91. 91.
    A. Poland and E. Glover, 2,3,7,8-tetrachlorodibenzo-p-dioxin: Studies on the mechanism of action, in: The Scientific Basis of Toxicity Assessment (H. Witschi, ed.), Amsterdam/Elsevier, 223–239 (1980).Google Scholar
  92. 92.
    J. D. McKinney and P. Singh, Structure-activity relationships in halogenated biphenyls: Unifying hypothesis for structural specificity, Chem. Biol. Interact., 33: 271–283 (1981).CrossRefGoogle Scholar
  93. 93.
    R. E. Kouri, L. H. Billups, T. H. Rude, C. E. Whitmire, B. Sass, and C. J. Henry, Correlation of inducibility of aryl hydrocarbon hydroxylase with susceptibility to 3-methylcholanthrene-induced lung cancers, Cancer Letters, 9: 277–284 (1980).CrossRefGoogle Scholar
  94. 94.
    R. A. Prough, Z. Sipal, S. W. Jakobsson, Metabolism of benzo-(a)pyrene in human lung microsomal fractions, Life Sci., 21: 1629–1636 (1977).CrossRefGoogle Scholar
  95. 95.
    A. Poland and E. Glover, 2,3,7,8-tetrachlorodibenzo-p-dioxin: segregation of toxicity with the Ah-locus, Mol. Pharmacol., 17 86–94 (1980).Google Scholar
  96. 96.
    R. J. Kociba, P. G. Keyes, J. E. Beyer, R. M. Carreon, C. E. Wade, D. A. Dittenberg, R. P. Kalnis, L. E. Frauson, C. N. Park, S. D. Barnard, R. S. Hummel, and C. G. Humiston, Results of a two-year chronic toxicity and oncogenicity study of 2,3,7,8-tetrachlorodibenzo-p-dioxin in rats, Toxicol. Appl. Pharmacol., 46: 279–303 (1978).CrossRefGoogle Scholar
  97. 97.
    J. S. Wasson, J. E. Huft, and N. Loprieno, A review on the genetic toxicology of chlorinated dibenzo-p-dioxins, Mut. Res., 47:141–160 (1977–78).Google Scholar
  98. 98.
    A. Poland and E. Glover, An estimate of the maximum in vivo covalent binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin to rat liver protein, ribosomal RNA and DNA, Cancer Res., 39: 3341–3344 (1979).Google Scholar
  99. 99.
    H. C. Pitot, T. Goldsworthy, H. A. Campbell, and A. Poland, Quantitative evaluation of the promotion by 2,3,7,8-tetra-chlorodibenzo-p-dioxin of hepatocarcinogenesis from diethyl- nitrosamine, Cancer Res., 40: 3616–3620 (1980).Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Jan Åke Gustafsson
    • 1
  • Jan Carlstedt-Duke
    • 1
  • Mikael Gillner
    • 1
  • Lars-Arne Hansson
    • 1
  • Bertil Högberg
    • 1
  • Johan Lund
    • 1
  • Göran Löfroth
    • 2
  • Lorenz Poellinger
    • 1
  • Rune Toftgård
    • 1
  1. 1.Department of Medical Nutrition Karolinska InstituteHuddinge University Hospital F69HuddingeSweden
  2. 2.Department of Radiobiology Wallenberg LaboratoryUniversity of StockholmStockholmSweden

Personalised recommendations