Vapor Transport and Sintering of Ceramics

  • D. W. Readey
  • J. Lee
  • T. Quadir


There is a significant difference in the important processing steps between metals and ceramics. Most of the microstructure development and control which are used to vary properties in metallic systems occur during post-consolidation thermal and mechanical treatments such as recrystallization and precipitation. Only recently are similar techniques being applied to ceramics. For example, a great deal of effort is underway in trying to increase the work of fracture of ceramics by transformational toughening1 and microcracking2. Nevertheless, if the fracture strength of such materials is determined by large random processing flaws, even though the average strength is increased by toughening, the sample to sample variation will still make the systems designer reluctant to utilize the material. Therefore, an improved understanding of ceramic microstucture development is the most critical area which will lead to new, improved, and more widespread use of high technology ceramics.


Neck Region Surface Diffusion Volume Diffusion Vapor Transport Boundary Migration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. L. Porter and A. H. Heuer, J. Am. Ceram. Soc. 62298 (1979).CrossRefGoogle Scholar
  2. 2.
    D. J. Green, J.Am. Ceram. Soc. 65. 610 (1982).CrossRefGoogle Scholar
  3. 3.
    R. L. Coble and R. M. Cannon, p. 291 in Vol.11 of Materials Science Research Processing of Crystalline Ceramics. ( Plenum, N. Y. ), 1978.Google Scholar
  4. 4.
    S. P. Mukherjee, Non-Crystalline Solids 42 477 1980 ).CrossRefGoogle Scholar
  5. 5.
    Eric A. Barringer and H. Kent Bowen, J. Am. Ceram. Soc. 65. C-199 (1982).CrossRefGoogle Scholar
  6. 5.
    T. Yamaguchi, et al., J. Mat. Sci. 151491 (1980).CrossRefGoogle Scholar
  7. 7.
    V. Suyama and a. Kato, J. Am. Ceram. Soc. 59146 (1976).CrossRefGoogle Scholar
  8. 8.
    V. Suyama, T. Mizobe, and A. Kato, Ceram. Int. 3141 (1977).CrossRefGoogle Scholar
  9. 9.
    Y. Ando and R. Uijeda, J. Am Ceram. Soc. 64C-12 (1981).CrossRefGoogle Scholar
  10. 10.
    Y. Suzawa, et al., Ceram. Int. 584 (1980).Google Scholar
  11. 11.
    V. J. Tennery, T. G. Godfrey, and R. A. Potter, J. Am. Ceram. Soc. 54327 (1971).CrossRefGoogle Scholar
  12. 12.
    P. D. Ownby and G. E. Junquist, J. Am. Ceram. Soc. 55. 433 (1972).CrossRefGoogle Scholar
  13. 13.
    H. F. Priest, G. L. Priest, and G. E. Gazza, J. Am. Ceram. Soc. 60181 (1977).CrossRefGoogle Scholar
  14. 14.
    J. J. Dih and R. M. Fulrath, J. Am. Ceram. Soc. 6092 (1977).CrossRefGoogle Scholar
  15. 15.
    H. U. Anderson, J. Am. Ceram. Soc. 5234 (1974).CrossRefGoogle Scholar
  16. 16.
    R. S. Gordon, p. 231 in Ceramics for Energy Applications. U. S. ERDA Report No. C0NF-751194, Nov. 1975.Google Scholar
  17. 17.
    G. C. Kuczynski, Trans. AIME 185 189(1949).Google Scholar
  18. 18.
    W. D. Kingery and M. Berg, J. Appl. Phys. 261205 (1955).CrossRefGoogle Scholar
  19. 18.
    T. L. Wilson and P. G. Shewmon, Trans. AIME 23648 (1966).Google Scholar
  20. 20.
    J. B. Moser and D. H. Whitmore, J. Appl. Phys. 31488 (1960).CrossRefGoogle Scholar
  21. 21.
    L. F. Norris and G. Parravano, J. Am. Ceram. Soc. 46449 (1963).CrossRefGoogle Scholar
  22. 22.
    T. E. Gupta and R. L. Coble, J. Am. Ceram. Soc. 51521 (1968).CrossRefGoogle Scholar
  23. 23.
    Y. Moriyoshi and W. Eomatsu, J. Am. Ceram. Soc. 53. 671 (1970).CrossRefGoogle Scholar
  24. 24.
    A. A. Ammar and D. W. Budworth, Proc. Brit. Ceram. Soc. 12251 (1969).Google Scholar
  25. 25.
    J. W. Halloran and H. U. Anderson, J. Am. Ceram. Soc. 57. 150 (1974).CrossRefGoogle Scholar
  26. 26.
    J. M. Neve and R. L. Coble, J. Am. Ceram. Soc. 57. 274 (1974).CrossRefGoogle Scholar
  27. 27.
    D. R. Stull and H. Prophet, et al., JANF Thermochemical Tables, 2nd edition (U. S. Govt. Printing Office, Washington, D. C. ), 1971.Google Scholar
  28. 28.
    R. E. Carter, J. Am. Ceram. Soc. 44116 (1961).CrossRefGoogle Scholar
  29. 29.
    D. W. Readey and G. C. Kuczynski, J. Am. Ceram. Soc. 49. 26 (1966).CrossRefGoogle Scholar
  30. 30.
    N. J. Shaw and A. H. Heuer, Acta Met. 3155 (1983).CrossRefGoogle Scholar
  31. 31.
    C. Greskovich and J. H. Rosolowski, J. Am. Ceram. Soc. 59. 336 (1976).CrossRefGoogle Scholar
  32. 32.
    C. E. Scott and J. S. Reed, Bull. Am. Ceram. Soc. 58587 (1979).Google Scholar
  33. 33.
    A. E. Nielsen, Kinetics of Precipitation. (MacMillan, N.Y.),1964.Google Scholar
  34. 34.
    G. W. Greenwood, Acta Met. 4243 (1956).CrossRefGoogle Scholar
  35. 35.
    I. M. Lifshitz and V. V. Slyozov, J. Phys. Chem. Solids 1935 (1961).CrossRefGoogle Scholar
  36. 36.
    C. Wagner, Z. Electrochem. 65 581 (1961).Google Scholar
  37. 37.
    . H. Fischmeister and G. Grimvall, Maters. Sci. Res. 6119 (1973).Google Scholar
  38. 38.
    G. C. Kuczynski, G. Matsumura, and B. D. Cullity, Acta Met. 8209 (1960).CrossRefGoogle Scholar
  39. 39.
    . R. J. Brook, t). 331 in Ceramic Fabrication Processes, F. F. Y. Wang, ed., Vol. 9 in Treatise on Materials Science and Technology, ( Academic Press, N. Y. ), 1978.Google Scholar
  40. 40.
    . R. J. Brook, J. Am. Ceram. Soc. 52. 52(1969).CrossRefGoogle Scholar
  41. 41.
    F. M. A. Carpay, J. Am. Ceram. Soc. 6082 (1977).CrossRefGoogle Scholar
  42. 42.
    P. G. Shewmon, Trans. AIME 2301134 (1964).Google Scholar
  43. 43.
    F. A. Nichols, J. Nucl. Maters. 30143 (1969).CrossRefGoogle Scholar
  44. 44.
    T. R. Anthony and R. A. Sigsbee, Acta Met. 191029 (1971).CrossRefGoogle Scholar
  45. 45.
    . W. D. Kincerv and B. Francois, n.471 in Sintering and Related Phenomena, G. C. Kuczynski, N. A. Hooten, and C. F. Gibbon, eds., ( Gordon and Breach, N.Y. ), 1967.Google Scholar
  46. 46.
    T. Quadir and D.W. Readey, to be published.Google Scholar
  47. 47.
    J. Lee and D. W. Readey,in this volumeGoogle Scholar
  48. 48.
    C. Greskovich and K. W. Lay, J. Am. Ceram. Soc. 55. 142 (1972).CrossRefGoogle Scholar
  49. 49.
    S. Prochazka, C. A. Johnson, and R. A. Giddings, p. 366 in Factors in Densification and Sintering of Oxide and Nonoxide Ceramics, (Tokyo Inst, of Tech., Tokyo, Japan ), 1979.Google Scholar
  50. 50.
    S. Prochazka and C. F. Bobik, p. 321 of ref. 14.Google Scholar
  51. 51.
    T. Quadir and D. W. Readey, to be published.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • D. W. Readey
    • 1
  • J. Lee
    • 1
  • T. Quadir
    • 1
  1. 1.The Ohio State UniversityColumbusUSA

Personalised recommendations