Skip to main content

Polymeric Monolayers and Liposomes as Models for Biomembranes and Cells

  • Chapter
Contemporary Topics in Polymer Science

Synopsis

Conventional model membrane systems based on natural lipids usually lack long term stability. Polymer chemistry can help to overcome this disadvantage introducing poly­merizable lipids into these systems. Polymerizable lipids used are diacetylenes, butadienes, acrylates or lipids which can undergo polycondensation.

The polymerization behaviour of these membrane systems can be characterized in monolayers and liposomes using surface pressure-area diagrams or DSC investigations respectively. Decreased membrane permeability and improved stability towards the addition of detergents of polymerized vesicles can be verified by leakage measurements of entrapped 6-carboxyfluorescein.

To introduce biological specifities into these stabilized systems polymerizable glycolipids are synthesized to provide surface recognition properties. Both monomeric and polymeric vesicles made of these lipids are agglutinated by lectins.

Further biological modifications are possible by adding natural lipids or membrane proteins (such as ATPase) to polymerizable membranes. Membrane protein activity can be retained after polymerization. The natural, non­polymerizable lipid component can be selectively degraded (for instance by phospholipase A2) to open up the previously stable compartment. The polymerization behaviour of diacetylene and butadiene lipids strongly depends on the miscibility with the natural component. Means to characterize these mixed systems are again DSC and electron microscopy, the latter evaluating patch formation using the ripple structure of phospholipids.

Besides this “synthetic” route, the combination of natural and poymerizable membrane components is principally possible via the fusion of cell membranes with polymerizable vesicles. Fusion of cells is possible using dielectrophoresis and dielectric breakdown. Since it was possible to prepare “giant” vesicles (visible under the light microscope) these techniques were also successfully applied to vesicle-vesicle fusion. Investigations on cell-vesicle fusion are currently under way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.J. Singer, G.L. Nicolson, Science, 175, 720 (1972)

    Article  CAS  Google Scholar 

  2. S.J. Singer in: Cell Membranes, G. Weissmann, R. Clairborne ed., HP Publishing Co., New York 1975, p. 44

    Google Scholar 

  3. a) D. Day, H.-H. Hub, H. Ringsdorf, Isr.J.Chem., 18, 325 (1979).

    CAS  Google Scholar 

  4. S.L. Regen, B. Czech, S.J. Singh, J.Am.Chem.Soc., 102, 6638 (1980).

    Article  CAS  Google Scholar 

  5. H.-H. Hub, B. Hupfer, H. Koch, H. Ringsdorf, Angew.Chem.Int.Ed.Engl., 19, 938 (1980).

    Article  CAS  Google Scholar 

  6. D.S. Johnston, S. Sanghera, M. Pons, D. Chapman, Biochim.Biophys.Acta, 602, 57 (1980).

    Article  CAS  Google Scholar 

  7. W. Curatolo, R. Radhakrishnan, C.M. Gupta, H.G. Khorana, Biochemistry, 20, 1374 (1981).

    Article  CAS  Google Scholar 

  8. D.F. O’Brien, T.H. Whitesides, R.T. Klingbiel, J.Polym.Sci.Polym.Lett., 19, 95 (1981).

    Article  Google Scholar 

  9. P. Tundo, D.J. Kippenberger, P.L. Klahn, N.E. Pietro, T.C. Tao, J.H. Fendler, J.Am.Chem.Soc., 104, 456 (1982).

    Article  CAS  Google Scholar 

  10. R. Benz, W. Prass, H. Ringsdorf, Angew.Chem.Suppl., 1982, 869.

    Google Scholar 

  11. H. Fendler in: Surfactants in Solution, K.L. Mittal ed., Plenum Press (Proceedings of the International Symposium, 1982, Lund, Sweden) in press.

    Google Scholar 

  12. K. Fukuda, Y. Shibasaki, H. Nakahara, J.Macromol.Sci., Chem., 15, 999 (1981).

    Google Scholar 

  13. T. Folda, L. Gros, H. Ringsdorf, Makromol.Chem.Rapid Commun., 3, 167 (1982).

    Article  CAS  Google Scholar 

  14. E. Sackmann, Ber.Bunsenges.Phys.Chem., 78, 929 (1974).

    CAS  Google Scholar 

  15. D. Small, Pure Appl.Chem., 53, 2095 (1982)

    Article  Google Scholar 

  16. G.L. Gaines: Insoluble Monolayers at Liquid-Gas Interfaces., Interscience, New York 1966.

    Google Scholar 

  17. H. C. Tien: Bimolecular Lipid Membranes, Theory and Practice. Marcel Dekker, New York 1974.

    Google Scholar 

  18. H.C. Huang, Biochemistry, 8, 344 (1969).

    Article  CAS  Google Scholar 

  19. D. Naegele, H. Ringsdorf in H.G. Elias: Polymerization in Oriented Systems. Midland Macromolecular Monographs Vol. 3, Gordon and Beach, New York 1977, p. 79

    Google Scholar 

  20. R. Ackermann, O. Inacker, H. Ringsdorf, Kolloid Z.Z.Polym., 249, 1118 (1979).

    Article  Google Scholar 

  21. S.A. Letts, T. Fort, Jr., J.B. Lando, J.Colloid Interface Sci., 56, 64 (1976).

    Article  CAS  Google Scholar 

  22. M. Hatada, M. Nishii, J.Polym.Sci., 15, 927 (1977).

    CAS  Google Scholar 

  23. D. Naegele, H. Ringsdorf, B. Tieke, G. Wegner, D. Day, J.B. Lando, Chem.-Ztg., 100, 426 (1976).

    Google Scholar 

  24. D. Day, H. Ringsdorf, J.Pol Sci.Polym Lett. Ed., 16, 205 (1978).

    Article  CAS  Google Scholar 

  25. H. Ringsdorf, Am.Chem.Soc.Div. Org. Coatings and Plast.Chem. Preprints, 42, 379 (1980).

    Google Scholar 

  26. D. Day, H. Ringsdorf, Makromol.Chem., 180, 1059 (1979).

    Article  CAS  Google Scholar 

  27. H.-H. Hub, Ph. D. Thesis, University of Mainz 1981.

    Google Scholar 

  28. G. Wegner, Makromol.Chem., 154, 35 (1972).

    Article  CAS  Google Scholar 

  29. R.H. Baughman, J.Appl.Phys., 43, 4362 (1972).

    Article  CAS  Google Scholar 

  30. A. Akimoto, K. Dorn, L. L. Gros, H. Ringsdorf, H. Schupp, Angew.Chem.Int.Ed.Engl., 20, 90 (1981).

    Article  Google Scholar 

  31. B. Hupfer, H. Ringsdorf, H. Schupp, Makromol.Chem., 182, 247 (1981).

    Article  CAS  Google Scholar 

  32. S.L. Regen, A. Singh, G. Oehme, H. Singh, Biochim. Biophys.Res. Commun., 101, 131 (1981).

    Article  CAS  Google Scholar 

  33. H.-H. Hub, B. Hupfer, H. Koch, H. Ringsdorf, Angew.Chem., 92, 962 (1980).

    Article  CAS  Google Scholar 

  34. K. Aliev, unpublished

    Google Scholar 

  35. H. Koch, H. Ringsdorf, Makromol.Chem., 182, 255 (1981)

    Article  CAS  Google Scholar 

  36. E. Lopez, D.F. O’Brien, T.H. Whitesides, J.Am.Chem.Soc., 104, 305 (1982).

    Article  CAS  Google Scholar 

  37. J.N. Weinstein, S. Yoshikami, L. Heukart, R. Blumenthal, W.A. Hagins, Science, 195, 489 (1977).

    Article  CAS  Google Scholar 

  38. H. Schupp, Ph.D. Thesis University of Mainz 1981

    Google Scholar 

  39. H. Bader, H. Ringsdorf, J. Skura, Angew.Chem.Int.Ed.Engl., 20, 91 (1981).

    Article  Google Scholar 

  40. K. Dorn, Ph.D. Thesis University of Mainz 1983.

    Google Scholar 

  41. M.B. Yatvin, W. Kreutz, B. A. Horwitz, M. Shinitzky, Science, 210, 1253 (1980).

    Article  CAS  Google Scholar 

  42. R. Kano, Y. Tanaka, T. Ogawa, M. Shimomura, J. Okahata, T. Kunitake, Chem.Lett., 1980, 421.

    Google Scholar 

  43. R. Bueschl, B. Hupfer, H. Ringsdorf, Makromol.Chem. Rapid Commun., 3, 589 (1982).

    Article  CAS  Google Scholar 

  44. D.F. O’Brien, E. Lopez, T.H. Whitesides, Biochim.Biophys. Acta, 1982, in press

    Google Scholar 

  45. R. Bueschl, H. Ringsdorf, E. Sackmann, in prep.

    Google Scholar 

  46. I.J. Goldstein, ed.: Carbohydrate-Protein Interactions, ACS Symposium Series, Vol. 88 Washington D.C. 1979.

    Google Scholar 

  47. J.H. Fendler, Acc.Chem.Res., 13, 7 (1980).

    Article  CAS  Google Scholar 

  48. N. Wagner, K. Dose, H. Koch, H. Ringsdorf, FEBS Lett., 132, 313 (1981).

    Article  CAS  Google Scholar 

  49. U. Zimmermann, P. Scheurich, G. Pilwat, R. Benz, Angew. Chem. Int. Ed. Engl., 20, 325 (1981).

    Article  Google Scholar 

  50. P. Scheurich, U. Zimmermann, H. Schnabl, Plant Physiol., 67, 849 (1981).

    Article  CAS  Google Scholar 

  51. H.-H. Hub, U. Zimmermann, H. Ringsdorf, FEBS Lett., 140, 254 (1982).

    Article  Google Scholar 

  52. R. Bueschl, H. Ringsdorf, U. Zimmermann, FEBS Lett., 150, 38 (1982)

    Article  CAS  Google Scholar 

  53. R. Bueschl, personal communcation

    Google Scholar 

  54. H. Koch, Ph.D. Thesis, University of Mainz 1983

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Dorn, K., Ringsdorf, H. (1984). Polymeric Monolayers and Liposomes as Models for Biomembranes and Cells. In: Vandenberg, E.J. (eds) Contemporary Topics in Polymer Science. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2759-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2759-2_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9706-2

  • Online ISBN: 978-1-4613-2759-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics