Carbohydrate Polymers:Nature’s High Performance Materials

  • R. H. Marchessault


The term carbohydrate polymers describes the ubiquity in nature of molecular systems containing carbohydrates. The property of conformational restriction in polysaccharides make them candidates for being the initial self-ordering molecules of prebiotic evolution. This same property in the complex carbohydrate moiety of glycoproteins is the basis of carbohydrate-mediated information transfer through cell surface oligosaccharides interacting with each other or with lectin-like proteins in cell-cell recognition processes.

Exopolysacoharides in their capacity to induce synthesis of antibodies (i.e., as immunogens) or their reactivity with antibodies (i.e., as antigens) have been on the ground floor of the development of molecular biology. The oligosaccharide repeating unit is the chemical expression of immunological character and their availability for attachment to synthetic carriers is a first step toward manmade vaccines. The exopolysaccharide gums display ordering characteristics in solution which are not matched by the plant polysaccharides or synthetic polyelectrolytes.

Finally, the term carbohydrate polymers can be stretched to include natural polyalkanoates based on hydroxyl acids of carbohydrate origin. The chemistry and properties of poly-β-hydroxybutyrate (PHB) make it a biomass transducer. A material which is intermediate microbial systems. Its potential as a natural thermoplastic, a biomedical implant and a source of chemicals from biomass is described.


Carbohydrate Polymer Glyceric Acid Green Seaweed Crotonic Acid Conformational Rigidity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Comprehensive Organic Chemistry, ed. by Derek Barton and W. David Ollis, Part 26, Carbohydrate Chemistry, Pergamon Press, N.Y., 5:885–831 (1979)Google Scholar
  2. 1a.
    N. Sharon, Complex Carbohydrates, Addison-Wesley Pub. Co., Reading, Mass. (1975)Google Scholar
  3. 2.
    V. J. Chapman, in Encyclopedia Britannica, 15th edn. 1:487–499Google Scholar
  4. 3.
    A. S. Perlin and S. Suzuki, Canad. J. Chem. 40:50 (1962)CrossRefGoogle Scholar
  5. 4.
    D. Gagnaire, R. H. Marchessault, Marc Vincendon, Tetrahedron Letters, 45:3953–3956 (1975)CrossRefGoogle Scholar
  6. 5.
    M. J. How, J. S. Brimacombe and M. Stacey, Advs. in Carbo. Chem. 19:303–415 (1964)Google Scholar
  7. 6.
    I. Orskov and M. A. Fife-Asbury, Int. J. Systematic Bacteriol. 27:386 (1977)CrossRefGoogle Scholar
  8. 7.
    Future Sources of Organic Raw Materials:CHEMRAWN I, ed. by L. St. Pierre and G. R. Brown, Pergamon Press, N.Y. (1980)Google Scholar
  9. 8.
    A. A. Demain, in: Annual Reports of Fermentation Processes, ed. by G. T. Tsao, Academic Press, New York, 4:193–208 (1980)Google Scholar
  10. 9.
    P. R. Sundararajan and V.S.R. Rao, Biopolymers 8:305–312 (1969)CrossRefGoogle Scholar
  11. 10.
    G. N. Ramachandran, C. Ramakrishnan and V. Sasisekharan in: Aspects of Protein Structure, ed. by G. N. Ramachandran, Academic Press, New York, pp. 121–135 (1963)Google Scholar
  12. 11.
    A. Bourret, H. Chanzy and R. Lazaro, Biopolymers 11:893–898 (1972)CrossRefGoogle Scholar
  13. 12.
    B. Wunderlich in Macromolecular Physics vol. 2., Academic Press, New York (1976)Google Scholar
  14. 13.
    A. Sarko and R. H. Marchessault, J. Polym. Sci. 28C:317–331 (1969)Google Scholar
  15. 14.
    R. D. Preston, The Physical Biology of Plant Cell Walls, Chapman and Hall, London (1974)Google Scholar
  16. 15.
    J. Blackwell, Biopolymers 7:281 (1969)CrossRefGoogle Scholar
  17. 16.
    R. H. Marchessault and Y. Deslandes, Carbohyd. Res. 75:231–242 (1979)CrossRefGoogle Scholar
  18. 17.
    Antony W. Burgess, J. Theor. Biol. 96:21–38 (1982)CrossRefGoogle Scholar
  19. 18.
    I. Nieduszinsky and R. H. Marchessault, Biopolymers II:1335–1344 (1972)Google Scholar
  20. 19.
    C. Lelliott, E. D. T. Atkins, J. W. F. Juritz and A. M. Stephen, Polymer 19:363–367 (l978)CrossRefGoogle Scholar
  21. 20.
    H. Chanzy, A. Grosrenaud, J. P. Joseleau, M. Dube and R. H. Marchessault, Biopolymers 21:301–319 (1982)CrossRefGoogle Scholar
  22. 21.
    R. H. Marchessault, A. Buleon, Y. Deslandes and T. Goto, J. Coll. and Interface Sci. 71:375 (1979)CrossRefGoogle Scholar
  23. 22.
    T. Painter, Pure and Appl. Chem. (in press)Google Scholar
  24. 23.
    Daniel C. Carter, John R. Ruble and G. A. Jeffrey, Carboh. Res. 102:59–67 (1982)CrossRefGoogle Scholar
  25. 24.
    R. S. Werbowyz and Grey, Mol. Cryst. Liq. Cryst. 34:97 (1976); ibid. Macromolecules 13:69 (1980).CrossRefGoogle Scholar
  26. 25.
    Y. Onogi, J. L. White and J. F. Fellers, J. Pol. Sci, Polym. Phys. Ed. 18:663 (1980)CrossRefGoogle Scholar
  27. 26.
    Bacterial Adherence, ed. by E. H. Beachey, Chapman and Hall, London (1980)Google Scholar
  28. 27.
    N. Sharon, Pure and Appl. Chem. (in press)Google Scholar
  29. 28.
    I. Goldstein, private communicationGoogle Scholar
  30. 29.
    Jean Montreuil, Pure and Appl. Chem. 42:431–477 (1975)CrossRefGoogle Scholar
  31. 30.
    Klaus Bock, Pure and Appl. Chem. (in press)Google Scholar
  32. 31.
    J. P. Carver and A. A. Grey, Biochemistry 20:6607–6616 (1981)CrossRefGoogle Scholar
  33. 32.
    I. A. Wilson, J. J. Skekel and D. C. Wiley, Nature 289:366–372 (1981)CrossRefGoogle Scholar
  34. 32a.
    Johann Deisenhofer, Biochemistry 20:2361 (1981)CrossRefGoogle Scholar
  35. 33.
    Jean Robert Brisson, Ph.D. thesis:The Three-Dimensional Structure of Asparagine-Linked Glycopeptides, University of Toronto (1982)Google Scholar
  36. 34.
    Harry Schacter, Saroja Narasimhan, Noam Harpaz and Gregory D. Longmore in: Membranes and Transport, ed. by Anthony N. Mastonosi, Plenum Pub. Corp. vol. 1, pp. 255–262 (1982)Google Scholar
  37. 35.
    R. U. Lemieux, K. Bock, L. Delbaere, S. Koto and V. S. R. Rao, Can. J. Chem. 58:631 (1980)CrossRefGoogle Scholar
  38. 36.
    Margaret Biswas and V. S. R. Rao, Carboh. Polymers 2:205 (1982)CrossRefGoogle Scholar
  39. 37.
    R. H. Marchessault in: Milton Harris:Chemist, Innovator and Entrepreneur, ed. by Miklos M. Breuer, Am. Chem. Soc., Washington, D.C. (1982)Google Scholar
  40. 38.
    O. T. Avery, C. M. MacLeod and M. McCarty, J. Exp. Mod 79:137 (1944)CrossRefGoogle Scholar
  41. 39.
    R. Dubos The Professor, The Institute and DNA, The Rockefeller University Press, New York (1976)Google Scholar
  42. 40.
    M. Heidelberger, C. M. MacLeod and M. M. DiLapi, J. Immunol. 66; 145–149 (1951).Google Scholar
  43. 41.
    G. G. S. Dutton, Keith L. Mackie, Angela V. Savage, Dietlinde Rieger-Hug and Stephan Stirm, Carboh. Res. 84:161–170 (1980)CrossRefGoogle Scholar
  44. 42.
    G. G. S. Dutton, A. V. Savage and M. Vignon, Can. J. Chem. 58, (1980)Google Scholar
  45. 43.
    I. W. Cottrell in: Fungal Polysaccharides, ed. by Paul A. Sandford and Kazuo Matsuda, A.C.S. Symposium Series 126, pp. 251–270 (1980)Google Scholar
  46. 44.
    H. R. Schuppner, U. S. Pat. 3,577, 016 (1971)Google Scholar
  47. 45.
    D. A. Rees and W. E. Scott, J. Chem. Soc. B:469 (1971)Google Scholar
  48. 45a.
    R. H. Marchessault and Y. Deslandes, Carboh. Polymers, 1:31–38 (1981)CrossRefGoogle Scholar
  49. 46.
    R. H. Marchessault, I. Imada, T. L. Bluhm and P. R. Sundararajan, Carboh. Res. 83:287–302 (1980)CrossRefGoogle Scholar
  50. 47.
    Y. Deslandes, R. H. Marchessault and A. Sarko, Macromolecules 13:1466–1471 (1980)CrossRefGoogle Scholar
  51. 48.
    E. D. T. Atkins, K. D. Parker, J Polymer Sci., C28:69 (1968)Google Scholar
  52. 49.
    R. H. Marchessault and Y. Deslandes, Carboh. Res. 75:231–242 (1979)CrossRefGoogle Scholar
  53. 50.
    T. Norisuye, T. Yanaki and H. Fujita, J. Pol. Sci., Phys. Ed. 18:547–558 (1980)CrossRefGoogle Scholar
  54. 51.
    K. Ogawa, T. Watanabe, J. Tsurugi, S. Ono, Carboh. Res. 23:399 (1972)CrossRefGoogle Scholar
  55. 52.
    T. Harada Process Biohem. 9:21–25 (1974)Google Scholar
  56. 53.
    T. L. Bluhm, Y. Deslandes, R. H. Marchessault, S. Perez and M. Rinaudo, Carboh. Res. 100:117–13O (1982)CrossRefGoogle Scholar
  57. 54.
    S. Kikumoto, T. Miyajima, K. Kimura, S. Okubo and N. Komatsu, J. Agr. Chem. Soc. Japan 45:162 (1971)Google Scholar
  58. 55.
    K. Hess in: Die Chemie der zellulose and Ohrer Beglieter, Leipzig:Akademischen Verlaggesellschaft, (1928)Google Scholar
  59. 56.
    M. Lemoine, Ann. Inst. Pasteur, 39:144 (1925)Google Scholar
  60. 57.
    C. Peaud-Lenoel and A. Kepes, Bull. Soc. Chim. Biol. 34:563–575 (1952)Google Scholar
  61. 58.
    R. Alper, D. G. Lundgren, R. H. Marchessault and W. A. Cote, Biopolymers 1:545–556 (1963)CrossRefGoogle Scholar
  62. 59.
    D. G. Lundgren, R. Alper, C. Schnaitman and R. H. Marchessault, J. Bacteriol. 89:245–251 (1965)Google Scholar
  63. 60.
    J. N. Baptist, U. S. Pat. 3,036,959 and 3, 044, 942Google Scholar
  64. 61.
    J. N. Baptist and F. X. Werber, SPE Trans. 4:245 (1964)Google Scholar
  65. 62.
    S. Coulombe, P. Schauweker, R. H. Marchessault and B. Hauttecoeur, Macromolecules 11:279–281 (1978)CrossRefGoogle Scholar
  66. 63.
    H. Morikawa and R. H. Marchessault, Can. J. Chem. 59:2306–2313 (1981)CrossRefGoogle Scholar
  67. 64.
    Eric R. Howells, Chemistry and Industry pp 508–511 (1982)Google Scholar
  68. 65.
    R. H. Marchessault, S. Coulombe, H. Morikawa, K. Okamura and J. F. Revol, Can. J. Chem. 59:38–44 (1981)CrossRefGoogle Scholar
  69. 66.
    Ronald Breslow, Science 218:532–537 (1982)CrossRefGoogle Scholar
  70. 67.
    E. R. Morris, D. A. Rees, G. Young, M. D. Walkingshaw and A. Karke, J. Mol. Biol. 110:1 (1977)CrossRefGoogle Scholar
  71. 68.
    K. Tabata, T. Ikumoto, T. Yanoki, W. Itoh and T. Kojima, Paper V-21, Abstracts, XIth International Carbohydrate Symposium, Vancouver, Canada Aug. (1982)Google Scholar
  72. 69.
    Marcia R. Mauk, Ronald C. Gamble and J. D. Baldeschwieler, Science 207:309–311 (1980)CrossRefGoogle Scholar
  73. 70.
    H. Gever, S. Stirm and K. Himmelspach, Med. Microbiol Immunol. 165:271–288 (1979).CrossRefGoogle Scholar
  74. 71.
    S. C. Charms and A. M. Stephen, Carbohydr. Res. 35:73 (1974)CrossRefGoogle Scholar
  75. 72.
    I. W. Sutherland, J. Gen. Microbiol. 94:211–216 (1976)Google Scholar
  76. 73.
    A. J. Chakraborty, H. Friebolin, H. Niemann and S. Stirm, Carbohydr. Res. 59:523–530 (1977)CrossRefGoogle Scholar
  77. 74.
    G. G. S. Dutton and T. E. Folkman, Carbohydr. Res. 80:147–161 (1980)CrossRefGoogle Scholar
  78. 75.
    L. L. Wallen and W.K. Rohwedder, Environ. Sci. Teohnol. 8:576 (1974)CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • R. H. Marchessault
    • 1
  1. 1.Xerox Research Centre of CanadaMississaugaCanada

Personalised recommendations