Advertisement

Surface Studies with Slow Positron Beaks

  • R. M. Nieminen
Part of the NATO ASI Series book series (NSSB, volume 107)

Abstract

Slow-positron physics is an exciting and rapidly advancing field. The continuing progress in the development of intense monochromatic beams of low-energy positrons has made it possible to perform a number of landmark experiments, where the interaction of the positron with solid surfaces plays a central role. These experiments either deal with fundamental atomic physics (positronium spectroscopy) or focus on the electronic and atomic properties of the surface region, using positrons as a probe. In the former category, the surface is involved just as an efficient source of positronium-like atoms. On the other hand, in the second category of experiments the surface i s the main object of study, and has to be prepared and maintained under carefully monitored conditions. The challenge is then to understand the various aspects of the positron-surface interaction and to correlate the observations with microscopic surface information. I shall concentrate on discussing the positron surface physics from a theoretical viewpoint, with emphasis on the new developments and future prospects. For background material and more detailed 1 discussion, the reader is referred to a number of recent reviews1–3.

Keywords

Positron Lifetime Surface Study Energy Loss Rate Slow Positron Incident Positron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    See the articles by A. P. Mills, Jr., K. G. Lynn, and R. M. Nieminen, in “Positron Solid State Physics”, W. Brandt and A. Dupasquier, eds., North-Holland, Amsterdam (1983).Google Scholar
  2. 2.
    A. P. Mills, Jr., in “Positron Annihilation”, P. G. Coleman, S. C. Sharma, and L. M. Diana, eds., North-Holland, Amsterdam (1982).Google Scholar
  3. 3.
    K. G. Lynn, Scr. Met. 14, 9. (1980); R. M. Nieminen, Phys. Scr., to be published.CrossRefGoogle Scholar
  4. 4.
    I. J. Rosenberg, A. H. Weiss, and K. F. Canter, Phys. Rev. Lett. 44, 1139 (1980)ADSCrossRefGoogle Scholar
  5. A. H. Weiss, I. J. Rosenberg, K. F. Canter, C. B. Duke, and A. Paton, Phys. Rev. B 27, 867 (1983).ADSCrossRefGoogle Scholar
  6. 5.
    F. Jona, D. W. Jepsen, P. M. Marcus, I. J. Rosenberg, A. H. Weiss, and K. F. Canter, Solid State Commun. 36, 957 (1989)CrossRefGoogle Scholar
  7. R. Feder, Solid State Commun. 34, 541 (1980)ADSCrossRefGoogle Scholar
  8. M. N. Read and D. N. Lowy, Surf. Sci. 107, L313 (1981).ADSCrossRefGoogle Scholar
  9. 6.
    R. M. Nieminen and J. Oliva, Phys. Rev. B 22, 2226 (1980).ADSCrossRefGoogle Scholar
  10. 7.
    W. Brandt and N. Arista, Phys. Rev. A 19, 2317 (1979); Phys. Rev. B 26, 4229 (1982).ADSCrossRefGoogle Scholar
  11. 8.
    A. P. Mills, Jr., P. M. Platzman, and B. L. Brown, Phys. Rev. Lett. 41, 1076 (1978).ADSCrossRefGoogle Scholar
  12. 9.
    A. P. Mills, Jr., Phys. Rev. Lett. 41, 1828 (1978).ADSCrossRefGoogle Scholar
  13. 10.
    C. H. Hodges and M. J. Stott, Solid State Commun. 12, 1153 (1973)ADSCrossRefGoogle Scholar
  14. R. M. Nieminen and C. H. Hodges, Phys. Rev. B 18, 2568 (1978).CrossRefGoogle Scholar
  15. 11.
    K. G. Lynn, Phys. Rev. Lett. 43, 391 (1979)ADSCrossRefGoogle Scholar
  16. A. P. Mills, Jr., Solid State Commun. 31, 623 (1979)ADSCrossRefGoogle Scholar
  17. C. A. Murray and A. P. Mills, Jr., Solid State Commun. 34, 789 (1980).ADSCrossRefGoogle Scholar
  18. 12.
    A. P. Mills, Jr., Phys. Rev. Lett. 46, 717 (1981); ibid. 50, 671 (1983).ADSCrossRefGoogle Scholar
  19. 13.
    R. J. Wilson, in “Positron Annihilation”, P. G. Coleman, S. C. Sharma, and L. M. Diana, eds., North-Holland, Amsterdam (1982)Google Scholar
  20. R. J. Wilson and A. P. Mills, Jr., Phys. Rev. B 27, 3949 (1983).ADSCrossRefGoogle Scholar
  21. 14.
    D. A. Fischer, K. G. Lynn, and W. E. Frieze, Phys. Rev. Lett. 50, 1149 (1983).ADSCrossRefGoogle Scholar
  22. 15.
    P. W. Zitzewitz, J. C. Van House, A. Rich, and D. W. Gidley, Phys. Rev. Lett. 43, 1281 (1979).ADSCrossRefGoogle Scholar
  23. 16.
    D. W. Gidley, A. R. Käynmen, and T. W. Capehart, Phys. Rev. Lett. 49, 1779 (1982).ADSCrossRefGoogle Scholar
  24. 17.
    J. Arponen and E. Pajanne, Ann. Phys. 121, 343 (1979); J. Phys. F. 9, 2359 (1979).ADSCrossRefGoogle Scholar
  25. 18.
    J. Oliva, Phys. Rev. B 21, 4909 (1980)ADSCrossRefGoogle Scholar
  26. G. C. Aers and J. B. Pendry, J. Phys. C 15, 3725 (1982).ADSCrossRefGoogle Scholar
  27. 19.
    S. Valkealahti and R. M. Nieminen, Appl. Phys. (in press), and to be published.Google Scholar
  28. 20.
    M. Gryzinski, Phys. Rev. A 138, 305 (1965).MathSciNetADSCrossRefGoogle Scholar
  29. 21.
    A. P. Mills and R. J. Wilson, Phys. Rev. A 26, 490 (1982).ADSCrossRefGoogle Scholar
  30. 22.
    B. Bergersen, E. Pajanne, P. Kubica, M. J. Stott, and C. H. Hodges, Solid State Commun. 15, 1377 (1974).ADSCrossRefGoogle Scholar
  31. 23.
    A. P. Mills, Jr. and C. A. Murray, Appl. Phys. 21, 1 (1980)CrossRefGoogle Scholar
  32. K. G. Lynn and D. O. Welch, Phys. Rev. B 22, 99 (1980).ADSCrossRefGoogle Scholar
  33. 24.
    C. H. Hodges and M. J. Stott, Phys. Rev. B 7, 73 (1973)ADSCrossRefGoogle Scholar
  34. R. M. Nieminen and C. H. Hodges, Solid State Commun. 18, 1115 (1976)CrossRefGoogle Scholar
  35. R. M. Nieminen and C. H. Hodges, J. Phys. F 6, 573 (1976)ADSCrossRefGoogle Scholar
  36. G. Fletcher, J. L. Fry, and P. C. Pattnaik, Phys. Rev. B 27, 3987 (1983).ADSCrossRefGoogle Scholar
  37. 25.
    R. J. Wilson, private communication.Google Scholar
  38. 26.
    J. B. Pendry, J. Phys. C 13, 1159 (1980).ADSCrossRefGoogle Scholar
  39. 27.
    K. Jester, D. Neilson, and R. M. Nieminen, unpublished.Google Scholar
  40. 28.
    A. P. Mills, Jr. and C. A. Murray, Bull. Am. Phys. Soc. 25, 392 (1980).Google Scholar
  41. 29.
    R.M. Nieminen and M. Manninen, Solid State Commun. 15, 403 (1974)ADSCrossRefGoogle Scholar
  42. N. Barberan and P. M. Echenique, Phys. Rev. B 19, 5431 (1979)ADSCrossRefGoogle Scholar
  43. J. E. Inglesfield and M. J. Stott, J. Phys. F 10, 253 (1980).ADSCrossRefGoogle Scholar
  44. 30.
    M. Babiker and D. R. Tilley, Solid State Commun. 39, 961 (1981)CrossRefGoogle Scholar
  45. M. Babiker, Physica 103B, 289 (1981)Google Scholar
  46. G. Barton and M. Babiker, J. Phys. C. 14, 4951 (1981).ADSCrossRefGoogle Scholar
  47. 31.
    G. Barton, J. Phys. C 14, 3975 (1981); J. Phys. C 15, 4727 (1982)ADSCrossRefGoogle Scholar
  48. 32.
    S. Chu, A. P. Mills, Jr., and C. A. Murray, Phys. Rev. B 23, 2060 (1981)ADSCrossRefGoogle Scholar
  49. M. Manninen and R. M. Nieminen, Appl. Phys. A 26, 93 (1981).ADSCrossRefGoogle Scholar
  50. 33.
    R. M. Nieminen and M. J. Puska, Phys. Rev. Lett. 50, 281 (1983).ADSCrossRefGoogle Scholar
  51. 34.
    K. G. Lynn, Phys. Rev. Lett. 44, 1330 (1980)ADSCrossRefGoogle Scholar
  52. K. G. Lynn and H. Lutz, Phys. Rev. B 22, 4143 (1980).ADSCrossRefGoogle Scholar
  53. 35.
    M. J. Puska and R. M. Nieminen, J. Phys. F 13, 333 (1983).ADSCrossRefGoogle Scholar
  54. 36.
    R. Y. Levine and L. M. Sander, Solid State Commun. 42, 5 (1982).ADSCrossRefGoogle Scholar
  55. 37.
    A. P. Mills, Jr. and L. Pfeiffer, Phys. Rev. Lett. 43, 1961 (1979).ADSCrossRefGoogle Scholar
  56. 38.
    A. Vehanen, K. G. Lynn, P. J. Schultz, E. Cartier, H. J. Göntherodt, and D. M. Parkin, to be published.Google Scholar
  57. 39.
    P. J. Schultz, K. G. Lynn, W. E. Frieze, and A. Vehanen, to be published.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • R. M. Nieminen
    • 1
  1. 1.Department of PhysicsUniversity of JyväskyläJyväskyläFinland

Personalised recommendations