Skip to main content

Techniques for Studying Systems Containing Many Positrons

  • Chapter
Positron Scattering in Gases

Part of the book series: NATO ASI Series ((NSSB,volume 107))

Abstract

We are at the threshold of being able to study systems containing finite amounts of antimatter: the electron-positron plasma, positronium molecules and droplets, and surfaces having comparable electron and positron densities. The necessary ingredients for such studies are well known.[1] One must first obtain 10-9 sec bursts containing ∿ 107 slow positrons each either from a pulsed electron accelerator [2–4] or from a strong reactor-produced 64Cu radioactive source [5] combined with time bunching stages. [6] The positron bursts must then be brought to focus on a few hundred angstrom diameter spot on a target surface by means of repeated stages of acceleration, focusing and moderation (brightness enhancement [7]). While no one has made such a positron source, progress is being reported on all aspects of the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.P.Mills, Jr., Science 218, 335 (1982)

    Article  ADS  Google Scholar 

  2. D.G.Costello, D.E.Groce, D.F.Herring and J.W.McGowan, Phys. Rev. B51433 (1972)

    ADS  Google Scholar 

  3. R.Howell, R.A. Alvarez and M. Stanek, Appl.Phys.Lett. 40, 751 (1982).

    Article  ADS  Google Scholar 

  4. M.Begemann, G.Graff, H.Herminghaus, H.Kalinowsky and R.Ley, Nucl,Instr. and Meth. 201,287 (1982). See also contribution by Graff et al to this workshop.

    Article  Google Scholar 

  5. Work in progress at Brookhaven National Laboratory.

    Google Scholar 

  6. A.P. Mills, Jr., Appl. Phys. 22, 273 (1980)

    Article  ADS  Google Scholar 

  7. A.P. Mills, Jr., Appl. Phys. 23, 189 (1980)

    Article  ADS  Google Scholar 

  8. K.F. Canter and A.P. Mills, Jr., Can. J. Phys. 60, 551 (1982)

    Article  ADS  Google Scholar 

  9. F.W. Sears, Introduction to Thermodynamics; 2nd edition, ( Addison-Wesley, Reading, MA. 1953 ).

    MATH  Google Scholar 

  10. J.R. Pierce [Theory and Design of Electron Beams (D. Van Nostrand, New York, 1954) p.1471 gives an expression for which sin6 is replaced by tan6 and E is the longitudinal beam energy.

    Google Scholar 

  11. E. Wigner, Trans. Faraday Soc., 34, 678 (1978).

    Article  Google Scholar 

  12. J.H. Malmberg and T.M. O’Neil, Phys. Rev. Lett. 39, 1333 (1977).

    Article  ADS  Google Scholar 

  13. P.M. Platzman and P.A. Wolff, Waves and Interactions in Solid State Plasmas, ( Academic Press, NY, 1973 ).

    Google Scholar 

  14. L. Spitzer, Physics of Fully Ionized Gases (Wiley, New York, 1962 ).

    Google Scholar 

  15. I.J. Rosenberg, A.H. Weiss and K.F. Canter, Phys. Rev. Lett. 44, 1139 (1980).

    Article  ADS  Google Scholar 

  16. See contribution by K.F. Canter to this volume.

    Google Scholar 

  17. W.F. Brinkman, T.M. Rice and B. Bell, Phys. Rev. B8, 1570 (1973)

    ADS  Google Scholar 

  18. S. Chu, A.P. Mills, Jr., and C.A. Murray, Phys. Rev. B23, 2060 (1981)

    ADS  Google Scholar 

  19. F. Reif, Fundamentals of Statistical and Thermal Physics ( McGraw Hill, New York, 1965 ) p. 324.

    Google Scholar 

  20. K.G. Lynn and D. Gidley, private communication.

    Google Scholar 

  21. The author wishes to thank P.M. Platzman and W.F. Brinkman for discussions.

    Google Scholar 

  22. C.M. Varma, Nature 267,686 (1977)

    Article  ADS  Google Scholar 

  23. M. Bertolotti and C. Sibilia, Appl. Phys. 19, 127 (1979).

    Article  ADS  Google Scholar 

  24. R. Ramaty, J.M. McKinley and F.C. Jones, Ap. J. 256, 238 (1982).

    Article  ADS  Google Scholar 

  25. F. Winterberg, Phys. Rev. A19, 1356 (1979).

    ADS  Google Scholar 

  26. A.P. Mills,Jr., P.M. Platzman and B.L. Brown, Phys. Rev. Lett. 41, 1076 (1978)

    Article  ADS  Google Scholar 

  27. A.P. Mills, Jr., Appl.Phys.Lett. 35,427 (1979); ibid. 37, 667 (1980).

    Article  ADS  Google Scholar 

  28. C.A. Murray and A.P. Mills, Jr., Solid State Commun. 34, 789 (1980).

    Article  ADS  Google Scholar 

  29. J.M. Dale, L.D. Hulet and S. Pendyala, Surface and Interface Analysis 2, 199 (1980).

    Article  Google Scholar 

  30. R.J. Wilson and A.P. Mills, Jr., Phys. Rev. B27, 3949 (1983).

    ADS  Google Scholar 

  31. P.J. Shultz, K.G. Lynn, W. Frieze and A. Vehanen, Phys. Rev. B27, 6626 (1983).

    ADS  Google Scholar 

  32. S. Pendyala, P.W. Zitewitz, J.W. McGowan and P.H.R. Orth, Phys. Lett. 43A, 298 (1973).

    ADS  Google Scholar 

  33. P.G. Coleman, T.C. Griffith and G.R. Heyland, Proc. Roy. Soc. London A331, 561 (1973).

    ADS  Google Scholar 

  34. A. Vehanen, K.G. Lynn, P.J. Shultz and M. Eldrup to be published.

    Google Scholar 

  35. P.B. Schwinberg, R.S. VanDyck, Jr. and H.G. Dehmelt, Phys. Rev. Lett. 47,1679 (1981) and refs. therein.

    Article  ADS  Google Scholar 

  36. J.H. Malmberg and J.S. deGrassie, Phys. Rev. Lett. 35, 577 (1975)

    Article  ADS  Google Scholar 

  37. J.H. Malmberg and T.M. O’Neil, Phys. Rev. Lett. 39, 1333 (1977).

    Article  ADS  Google Scholar 

  38. T.M. O’Neil, Phys. Fluids 23, 725 (1980).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. W.M. Fairbank, F.C. Witteborn, J.M.J. Madey and J.M. Lockhart, Experimental Gravitation, Proc. Int. Sch. Phys. “Enrico Fermi” Course LVI, B. Bertotti, ed. ( Academic Press, New York, 1974 ) p. 310.

    Google Scholar 

  40. K.G. Lynn, D.N. Lowy and I.K. MacKenzie, J.Phys. C: Solid St. Phys. 13, 919 (1980).

    Article  ADS  Google Scholar 

  41. It is unfortunate that one apparently cannot use the resistive tube damping idea of Ref. 36 to remove the longitudinal kinetic energy of the particles. Neglect of the skin depth in the calculation causes the resistive damping rate to be greatly over estimated. However, once the beam has internally thermalized it can be slowed to very low energies by a retarding field.

    Google Scholar 

  42. K.G. Lynn, private communication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Mills, A.P. (1984). Techniques for Studying Systems Containing Many Positrons. In: Humberston, J.W., McDowell, M.R.C. (eds) Positron Scattering in Gases. NATO ASI Series, vol 107. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2751-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2751-6_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9804-5

  • Online ISBN: 978-1-4613-2751-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics