Advertisement

Interfacial Properties of Filled Epoxide Resins

  • A. C. Moloney
  • H. H. Kausch
  • H. R. Stieger

Abstract

The fracture properties of two commercial epoxide resins both unfilled and filled with varying volume fraction of silica, alumina and dolomite particles have been investigated. The variation in the stress intensity factor with the crack velocity was measured using the double torsion test technique. In order to examine the influence of the resin-filler adhesion on the fracture toughness, alumina particles were treated with three silane compounds. In addition the yield stresses and the flexural strengths were measured. In an attempt to si-mulate resin-filler interactions and to measure the fracture energy for interfacial separation a scarf joint was used with a bond angle of 45 °. This geometry produces a mixture of mode I and mode II loading. The combined mode strain energy release rate (G(I,II)c) was determined.

Keywords

Stress Intensity Factor Flexural Strength Scan Electron Micrograph Alumina Particle Interfacial Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.C. Phillips and B. Harris, in “Polymer Engineering Composites”, M.O.W. Richardson Editor, Ch. 2, Appliqd Science, London 1977.Google Scholar
  2. 2.
    K.L. Mittal, Solid State Technol. ( May 1979 ) 89.Google Scholar
  3. 3.
    K.L. Trachte and A.T. DiBenedetto, Int. J. Polym. Mater., 1, 75 (1971).CrossRefGoogle Scholar
  4. 4.
    R.W. Davidge and G. Tappin, J. Mater. Sci., 3, 165 (1968).CrossRefGoogle Scholar
  5. 5.
    C. Tourenq and F. Gragger, Naturstein Ind., 11, 19 (1965).Google Scholar
  6. 6.
    S.M. Wiederhorn, J. Amer. Ceram. Sac., 52, 99 (1969).CrossRefGoogle Scholar
  7. 7.
    A.G. Evans, J. Mater. Sci., 7, 1137 (1971).CrossRefGoogle Scholar
  8. 8.
    H.G. Tattersall and G. Tappin, J. Mater. Sci., 1, 296 (1966).CrossRefGoogle Scholar
  9. 9.
    B.J. Pletka, E.R. Fuller and B.G. Loepke, in “Fracture Mechanics Applied to Brittle Materials”, STP No. 678, p. 3, 19, ASTM, Philadelphia, PA, 1979.Google Scholar
  10. 10.
    B. Stalder and H.H. Kausch, J. Mater, Sci., 17, 2481 (1982).CrossRefGoogle Scholar
  11. 11.
    P. Leevers, J. Mater, Sci., 17, 2469 (1982).CrossRefGoogle Scholar
  12. 12.
    B. Stalder, Ph. Béguelin and H.H. Kausch, Int. J. Fract., in press (1982).Google Scholar
  13. 13.
    J.G. Williams and H. Ford, J. Mech. Eng. Sci., 6, 7 (1964).CrossRefGoogle Scholar
  14. 14.
    G.C. Trantina, J. Comp. Mater., 6, 371 (1972).CrossRefGoogle Scholar
  15. 15.
    W.D. Bascom, C.O. Timmons and R.L. Jones, J. Mater. Sci., 10, 1037 (1975).CrossRefGoogle Scholar
  16. 16.
    W.D. Bascom and J. Oroshnik, J. Mater. Sci., 13, 1411 (1978).CrossRefGoogle Scholar
  17. 17.
    L.J. Broutman and S. Sahu, Mater. Eng. Sci., 8, 98 (1971).CrossRefGoogle Scholar
  18. 18.
    J.C. Hammond and D.C. Quayle, Second Int. Conf. on Deformation, Yield and Fracture of Polymers, P.R.I., March 1973, Cambridge, UKGoogle Scholar
  19. 19.
    A.C. Moloney, H.H. Kausch and H.R. Stieger, manuscript in preparation (1983).Google Scholar
  20. 20.
    S. Kunz-Douglass, P.W.R. Beaumont and M.F. Ashby, J. Mater. Sci., 15, 1109 (1980).CrossRefGoogle Scholar
  21. 21.
    F.F. Lange, Phil. Mag., 22, 983 (1970).CrossRefGoogle Scholar
  22. 22.
    F.F. Lange, J. Amer. Ceram. Soc., 54, 614 (1971).CrossRefGoogle Scholar
  23. 23.
    A.C. Moloney, H.H. Kausch and H.R. Stieger, J. Mater. Sci., 18, 208 (1983).CrossRefGoogle Scholar
  24. 24.
    J.A. Manson and L.H. Sperling, “Polymer Blends and Composites”, Plenum Press, New York, 1976.Google Scholar
  25. 25.
    O. Ishai and L.J. Cohen, Int. J. Mech. Sci., 9, 539 (1967).CrossRefGoogle Scholar
  26. 26.
    R.J. Young and P.W.R. Beaumont, J. Mater. Sci., 10, 1343 (1975) and 12, 684 (1977).Google Scholar
  27. 27.
    A.G. Evans, Phil. Mag., 26 /6, 1327 (1972).CrossRefGoogle Scholar
  28. 28.
    D.J. Green, P.S. Nicholson and J.D. Embery, J. Mater. Sci., 14, 1657 (1979).CrossRefGoogle Scholar
  29. 29.
    F.F. Lange and K.C. Radford, J. Mater. Sci., 6, 1197 (1971).CrossRefGoogle Scholar
  30. 30.
    A.J. Kinloch, J. Mater. Sci., 15, 2141 (1980).CrossRefGoogle Scholar
  31. 31.
    R.A. Gledhill, A.J. Kinloch, S. Yamini and R.J. Young, Polymer, 19, 574 (1978).CrossRefGoogle Scholar
  32. 32.
    A.K. Saxena, Fibre Sci. Technol., 12, 111 (1979).CrossRefGoogle Scholar
  33. 33.
    D.R. Mulville, P.W. Mast and R.N. Vaishnav, J. Eng. Mater. Technol., 100, 27 (1978).CrossRefGoogle Scholar
  34. 34.
    D.R. Mulville and R.N. Vaishnav, J. Adhesion, 7, 215 (1975).CrossRefGoogle Scholar
  35. 35.
    W.D. Bascom, R.L. Cottington and C.O. Timmons, J. Appl. Polym. Sci. Appl. Polym. Symp., 32, 165 (1977).Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • A. C. Moloney
    • 1
  • H. H. Kausch
    • 1
  • H. R. Stieger
    • 2
  1. 1.Laboratoire de PolymèresSwiss Federal Institute of TechnologyLausanneSwitzerland
  2. 2.Brown Boveri & CieZurich-OerlikonSwitzerland

Personalised recommendations