Advertisement

Natural Polarized Light and Vision

  • Talbot H. Waterman
Part of the NATO ASI Series book series (NSSA, volume 74)

Abstract

Partial linear polarization is a prominent attribute of both scattered and reflected light in nature. Consequently sunlight in the atmosphere and hydrosphere produces substantial polarization patterns in which e-vector directions and (to a more variable extent) degree of polarization are reasonably well predicted by primary Rayleigh scattering. Despite its negligible relevance for normal human vision many organisms have been shown, following von Frisch’s pioneer work, to have polarization sensitivity at various levels ranging from dichroism of visual and accessory pigments, to photoreceptor cells, to visual interneurons and ultimately oriented behavior.

By definition polarization sensitivity is the capacity of any biological element to respond differentially to either e-vector direction or degree of polarization of a light stimulus. While this capability shows interesting analogies with spectral sensitivity, the extent to which polarization vision, if indeed it has its own quality, is parallel to color vision remains to be experimentally demonstrated.

Analyzing progress mainly evident in research published during the past two to three years, the present review reports on significant new research in four areas: 1. Measurements of sky polarization in relation to animal vision. 2. Specialization of receptor mechanisms for polarization sensitivity particularly at the retinal and retinular levels. Among other things, work with genetic mutants is beginning to influence this area as it has many others. 3. Information processing (mostly relevant to e-vector direction) remains largely speculative except for some interneuron recordings in crustaceans. 4. Field and laboratory behavioral experiments mainly on bees and ants, but to some extent on flies, continue to define the adaptive applications which animals have evolved for polarization sensitivity.

Keywords

Visual Pigment Sensory Physiology Skylight Polarization Pattern Dance Direction Photostable Pigment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Able, K.P. (1982) Skylight polarization patterns at dusk influence migratory orientation in birds. Nature 299: 550–551.Google Scholar
  2. Altner, I., Burkhardt, D. (1981) Fine structure of the ommatidia and the occurrence of rhabdomeric twist in the dorsal eye of male Bibio marci (Diptera, Nematocera, Bibionidae). Cell Tissue Res. 215: 607–623.Google Scholar
  3. Autrum, H. (Ed.) (1979) Handbook of Sensory Physiology. Vol. VII/6. Vision in Invertebrates. A: Invertebrate Photoreceptors. Berlin, Springer-Verlag, 707 pp.Google Scholar
  4. Autrum, H. (Ed.) (1981a) Handbook of Sensory Physiology. Vol. VII/6. Vision in Invertebrates. B. Invertebrate Visual Centers and Behavior I. Berlin, Springer-Verlag, 611 pp.Google Scholar
  5. Autrum, H. (Ed.) (1981b) Handbook of Sensory Physiology. Vol. VII/6. Vision in Invertebrates. C: Invertebrate Visual Centers and Behavior II. Berlin, Springer-Verlag, 665 pp.Google Scholar
  6. Batschelet, E. (1981) Circular Statistics in Biology. London, Academic Press, 371 pp.Google Scholar
  7. Bernard, G.D., Wehner, R. (1977) Functional similarities between polarization vision and color vision. Vision Res. 17: 1019–1028.Google Scholar
  8. Blest, A.D. (1978) The rapid synthesis and destruction of photoreceptor membrane by a dinopid spider. A daily cycle. Proc. Roy. Soc. Lond. B 200: 463–483.Google Scholar
  9. Blest, A.D., Stowe, S., Eddey, W., Williams, D.S. (1982) The local deletion of microvillar cytoskeleton from photoreceptors of tipulid flies during membrane turnover. Proc. Roy. Soc. Lond. B 215: 469–479.Google Scholar
  10. Bowmaker, J.K. (1983) Trichromatic color vision: why only three receptor channels? Trends Neurosci. 6: 41–43.Google Scholar
  11. Brines, M.L. (1978) Skylight polarization patterns as cues for honey bee orientation; physical measurements and behavioral experiments. Ph.D. Thesis. Rockefeller University. 393 pp.Google Scholar
  12. Brines, M.L. (1980) Dynamic patterns of skylight polarization as clock and compass. J. Theor. Biol. 86: 507–512.Google Scholar
  13. Brines, M.L., Gould, J.L. (1979) Bees have rules. Science 206: 571–573.Google Scholar
  14. Brines, M.L., Gould, J.L. (1982) Skylight polarization patterns and animal orientation. J. Exp. Biol. 96: 69–91.Google Scholar
  15. Burkhardt, D. (1962) Spectral sensitivity and other response characteristics of single visual cells in the arthropod eye. In: Symposia of the Society for Experimental Biology, 16, Biological Receptor Mechanisms. Ed., J.W.L. Beament, Cambridge, University Press, pp. 86–109.Google Scholar
  16. Burkhardt, D. (1982) Birds, berries and UV. Naturwissenschaften 69: 153–157.Google Scholar
  17. Burghause, F.M.H.R. (1979) Structural specialization in the dorsofrontal region of the cricket compound eye ( Orthoptera, Grylloidea). Zool. Jb. Physiol. 83: 502–525.Google Scholar
  18. Cartwright, B.A., Collett, T.S. (1982) How honey bees use landmarks to guide their return to a food source. Nature 296: 560–564.Google Scholar
  19. Chen, H.S., Rao, C.R.N. (1968) Polarization of light on reflection by some natural surfaces. Br. J. Appl. Phys. (J. Phys. D) Ser. 2. Is 1191–1200.Google Scholar
  20. Collett, T.S., Land, M.F. (1978) How hoverflies compute interception courses. J. Comp. Physiol. 125: 191–204.Google Scholar
  21. Couet, H.G. de, Blest, A.D. (1982) The retinal acid phosphatase of a crab, Leptograpsus: characterization, and relation to the cyclical turnover of photoreceptor membrane. J. Comp. Physiol. 149: 353–362.Google Scholar
  22. Coulson, K.L. (1968) Effect of surface reflection on the angular and spectral distribution of skylight. J. Atmospheric Sei. 25: 759–770.Google Scholar
  23. Cronin, T.W., Goldsmith, T.H. (1982) Photosensitivity spectrum of crayfish rhodopsin measured using fluorescence of metarhodopsin. J. Gen. Physiol. 79: 313–332.Google Scholar
  24. Cummins, D., Goldsmith, T.H. (1981) Cellular identification of the violet receptor in the crayfish eye. J. Comp. Physiol. 142: 199–202.Google Scholar
  25. Dartnall, H.J.A. (1975) Assessing the fitness of visual pigments for their photic environments. In: Vision in fishes. Ed., M.A. Ali, New York, Plenum Press, pp. 543–563.Google Scholar
  26. Daumer, K. (1958) Blumenfarben, wie sie die Bienen sehen. Z. Vergl. Physiol. 41: 49–110.Google Scholar
  27. Davenport, D., Culler, G.J., Greaves, J.O.B., Forward, R.B., Hand, W.G. (1970) The investigation of the behavior of micro organisms by computerized television. IEEE Trans. Biomed. Eng. 17: 230–237.Google Scholar
  28. Dubs, A. (1982) The spatial integration of signals in the retina and lamina of the fly compound eye under different conditions of luminance. J. Comp. Physiol. 146: 321–343.Google Scholar
  29. Dyer, F.C., Gould, J.L. (1981) Honey bee orientation: A backup system for cloudy days. Science 214: 1041–1042.Google Scholar
  30. Eckert, H. (1983) The dependence of the landing response of blowflies, Calliphora, on the e-vector of linearly polarized light. Naturwissenschaften 70: 150–151.Google Scholar
  31. Edrich, W., Neumeyer, C., von Helversen, O. (1979) ’Anti-sun orientation’ of bees with regard to a field of ultraviolet light. J. Comp. Physiol. 134: 151–157.Google Scholar
  32. Egelhaaf, A., Dambach, M. (1983) Giant rhabdomes in a specialized region of the compound eye of a cricket: Cycloptiloides canariensis ( Insecta, Gryllidae). Zoomorphology 102: 65–77.Google Scholar
  33. Eguchi, E. (1971) Fine structure and spectral sensitivities of retinular cells in the dorsal sector of compound eyes in the dragonfly Aeschna. Z. Vergl. Physiol. 71: 201–218.Google Scholar
  34. Eguchi, E., Meyer-Rochow, V.B. (1983) Ultraviolet photography of forty-three species of Lepidoptera representing ten families. Annot. Zool, Japan. 56: 10–18.Google Scholar
  35. Eguchi, E., Waterman, T.H. (1973) Orthogonal microvillus pattern in the eighth rhabdomere of the rock crab Grapsus. Z. Zellforsch. 137: 145–157.Google Scholar
  36. Eguchi, E., Goto, T., Waterman, T.H. (1982) Unorthodox pattern of microvilli and intercellular junctions in regular retinal cells of the porcellanid crab Petrolisthes. Cell Tissue Res. 222: 493–513.Google Scholar
  37. Eguchi, E., Waterman, T.H., Akiyama, J. (1973) Localization of the violet and yellow receptor cells in the crayfish retinula. J. Gen. Physiol. 62: 355–374.Google Scholar
  38. Fein, A., Szuts, E.Z. (1982) Photoreceptors: their role in vision. Cambridge, Cambridge University Press, 212 pp.Google Scholar
  39. Filippov, M.P., Ovchinnikov, A.A. (1982) Quantum optimality of day vision and photocolorimetry. (transl.) Doklady Biophysics 266: 146–149.Google Scholar
  40. Franceschini, N., Hardie, R., Ribi, W., Kirschfeld, K. (1981) Sexual dimorphism in a photoreceptor. Nature 291: 241–244.Google Scholar
  41. Frantsevich, L.I.K. (1980) Visual Analysis of Space in Insects. Kiev, ‘Scientific Thought’, 288pp. (in Russian)Google Scholar
  42. Frisch, K. von (1948) Gelöste und ungelöste Rätsel der Bienensprache. Naturwissenschaften. 35: 38–43.Google Scholar
  43. Frisch, K. von (1949) Die Polarisation des Himmelslichtes als orientierender Faktor bei den Tanzen der Bienen. Experientia 5: 142–148.Google Scholar
  44. Frisch, K. von (1965) Tanzsprache und Orientierung der Bienen. Berlin, Springer-Verlag, 578 pp.Google Scholar
  45. Gehreis, T. (Ed.) (1974) Planets, Stars and Nebulae. Tucson, University of Arizona Press. 1133 pp.Google Scholar
  46. Glas, H.W. van der (1978) Mechanisms of E-vector orientation in the honeybee. Ph.D. Thesis, Reijksuniversiteit van Utrecht. 186 pp.Google Scholar
  47. Glas, H.W. van der (1980a) Orientation of bees, Apis mellifera. to unpolarized colour patterns, simulating the polarized zenith skylight pattern. J. Comp. Physiol. 139: 225–241.Google Scholar
  48. Glas, H.W. van der (1980b) Models for directional feature extraction in celestial polarization patterns by insects. Proc. Eur. Soc. Comp. Physiol. Biochem. 2: 137–138.Google Scholar
  49. Goldsmith, T.H. (1972) The natural history of invertebrate visual pigments. In: Handbook of Sensory Physiology, VII/1. Ed., H.J.A. Dartnall, Berlin, Springer-Verlag, pp. 685–719.Google Scholar
  50. Goldsmith, T.H., Wehner, R. (1977) Restriction on rotational and translational diffusion of pigment in membranes of a rhabdomeric photoreceptor. J. Gen. Physiol. 70: 453–490.Google Scholar
  51. Gould, J.L. (1982) The map sense of pigeons. Nature 296: 205–211.Google Scholar
  52. Greaves, J.O.B. (1975) The bugsystem: the software structure for the reduction of quantized video data of moving organisms. Proc. IEEE 63: 1415–1425.Google Scholar
  53. Gribakin, F.G. (1981) Automatic spectrosensitometry of photoreceptors in Lethrus ( Coleoptera, Scarabaeidae). J. Comp. Physiol. 142: 95–102.Google Scholar
  54. Gribakin, F.G., Chesnokova, E.G. (1982) Changes in functional characteristics of the compound eye of bees caused by mutations disturbing tryptophan metabolism. (transl.) Neurophysiology 14: 57–62.Google Scholar
  55. Gribakin, F.G., Vishnevskaya, T.M., Polyanovskii, A.D. (1979) Polarization and spectral sensitivity of single photoreceptors of the domestic cricket. (transl.) Neurophysiology 11: 483–490.Google Scholar
  56. Griffin, D.R. (1982) Ecology of migration: is magnetic orientation a reality? (book review) Quart. Rev. Biol. 57: 293–295.Google Scholar
  57. Grundler, O.J. (1974) Elektronenmikroskopische Untersuchungen am Auge der Honigbiene (Apis mellifica). I. Untersuchungen zur Morphologie und Anordnung der neun Retinulazellen in Ommatidien verschiedener Augenbereiche und zur Perzeption linear polarisierten Lichtes. Cytobiologie 9: 203–220.Google Scholar
  58. Guo, A. (1980a) Elektrophysiologische Untersuchungen zur Spektral- und Polarisations-empfindlichkeit der Sehzellen von Calliphora erythrocephala. I. Scientia Sinica 23: 1182–1196.Google Scholar
  59. Guo, A. (1980b) Elektrophysiologische Untersuchungen zur Spektral- und Polarisations-empfindlichkeit an den Sehzellen von Calliphora erythrocephala. II. Scientia Sinica 23: 1461–1468.Google Scholar
  60. Guo, A. (1981a) Electrophysiologische Untersuchungen zur Spektral- und Polarisations-empfindlichkeit der Sehzellen von Calliphora erythrocephala. III. Scientia Sinica 24: 272–286.Google Scholar
  61. Guo, A. (1981b) Electrophysiologische Untersuchungen zur Spektral- und Polarisations-empfindlichkeit an den Sehzellen von Calliphora erythrocephala. IV. Scientia Sinica 24: 542–553.Google Scholar
  62. Hall, J.C. (1982) Drosophila neurogenetics. Quart. Rev. Biophysics 15: 223–479.Google Scholar
  63. Hardie, R.C., Kirschfeld, K. (1983) Ultraviolet sensitivity of fly photoreceptors R7. and R8: evidence for a sensitising function. Biophys. Struct. Mech. 9: 171–180.Google Scholar
  64. Hardie, R.C., Franceschini, N., Mclntyre, P.D. (1979) Electrophy-siological analysis of fly retina. II. Spectral and polarization sensitivity in R7 and R8. J. Comp. Physiol. 133: 23–39.Google Scholar
  65. Hardie, R.C., Franceschini, N., Ribi, W., Kirschfeld, K. (1981) Distribution and properties of sex-specific photoreceptors in the fly Musca domestica. J. Comp. Physiol. 145: 139–152.Google Scholar
  66. Harris, W.A., Stark, W.S., Walker, J.A. (1976) Genetic dissection of the photoreceptor system in the compound eye of Drosophila melanogaster. J. Physiol. 256: 415–439.Google Scholar
  67. Heisenberg, M., Buchner, E. (1977) The role of retinula cell types in visual behavior of Drosophila melanogaster. J. Comp. Physiol. 117: 127–162.Google Scholar
  68. Holtzman, E. (1981) Membrane circulation: an overview. Methods in Cell Biology 23: 379–397.Google Scholar
  69. Holtzman, E., Mercurio, A.M. (1980) Membrane circulation in neurons and photoreceptors: some unresolved issues. Int. Rev. Cytol. 67: 1–67.Google Scholar
  70. Horridge, G.A. (1980) Apposition eyes of large diurnal insects as organs adapted to seeing. Proc. Roy. Soc. Lond. B 207: 287–309.Google Scholar
  71. Horridge, G.A., Marčelja, L., Jahnke, R., Matič, T. (1983) Single electrode studies on the retina of the butterfly Papilio. J. Comp. Physiol. 150: 271–294.Google Scholar
  72. Jacobs, G.H. (1981) Comparative Color Vision, New York, Academic Press, 209 pp.Google Scholar
  73. Jander, R. (1957) Die optische Richtungsorientierung der roten Waldameise (Formica rufa). Z. Vergl. Physiol. 40: 162–238.Google Scholar
  74. Jander, R., Waterman, T.H. (1960) Sensory discrimination between polarized light and light intensity patterns by arthropods. J. Cell. Comp. Physiol. 56: 137–160.Google Scholar
  75. Jarvilehto, M., Moring, J. (1976) Spectral and polarization sensitivity of identified retinal cells of the fly. In: Neural Principles in Vision. Eds., F. Zettler, R. Weiler, Berlin, Springer-Verlag, pp. 214–226.Google Scholar
  76. Jerlov, N.G. (1976) Marine Optics. Amsterdam, Elsevier, 231 pp.Google Scholar
  77. Ealmijn, A.J. (1978) Electric and magnetic sensory world of sharks, skates, and rays. In: Sensory Biology of Sharks, Skates, and Rays. Eds., E.S. Hodgson and R.F. Mathewson. Arlington, Office of Naval Research, Dept. of the Navy, pp. 507–528.Google Scholar
  78. Kirk, M.D., Waldrop, B. and Glantz, R.M. (1982) The crayfish sustaining fibers. I. Morphological representation of visual receptive fields in the second optic neuropil. J. Comp. Physiol. 146: 175–179.Google Scholar
  79. Kirschfeld, K. (1972) Die notwendige Anzahl von Rezeptoren zur Bestimmung der Richtung des elektrischen Vektors linear polarisierten Lichtes. Z. Naturforsch. 27b: 578–579.Google Scholar
  80. Kirschfeld, K. (1973) Das neurale Superpositionsauge. Fortschr. Zool. 21: 229–257.Google Scholar
  81. Kirschfeld, K. (1979) The function of photostable pigments in fly photoreceptors. Biophys. Struct. Mechanism 5: 117–128.Google Scholar
  82. Kirschfeld, K. (1981) Bistable and photostable pigments in micro- villar photoreceptors. In: Sense Organs. Eds., M.S. Laverack, D.J. Cosens, Glasgow, Blackie and Sons Ltd., pp. 142–162.Google Scholar
  83. Kirschfeld, K., Franceschini, N. (1968) Optische Eigenschaften der Qmmatidien im Komplexauge von Musca. Kybernetik 5: 47–52.Google Scholar
  84. Kirschfeld, K., Reichardt, W. (1970) Optomotorische Versuche an Musca mit linear polarisiertem Licht. Z. Naturforsch. 25b: 228.Google Scholar
  85. Kirschfeld, K., Feiler, R., Franceschini, N. (1978) A photostable pigment within the rhabdomere of fly photoreceptors no. 7. J. Comp. Physiol. 125: 275–284.Google Scholar
  86. Kirschfeld, K., Lindauer, M., Martin, H. (1975) Problems of menotactic orientation according to the polarized light of the sky. Z. Naturforsch. 30c: 88–90.Google Scholar
  87. Koshland, D.E. (1980) Bacterial Chemotaxis as a Model Behavioral System. New York, Raven Press, 193 pp.Google Scholar
  88. Krebs, W., Lietz, R. (1982) Apical region of the crayfish reti- nula. Cell Tissue Res. 222: 409–415.Google Scholar
  89. Kretz, R. (1979) A behavioral analysis of color vision in the ant Cataglyphis bicolor ( Formicidae: Hymenoptera). J. Comp. Physiol. 131: 217–233.Google Scholar
  90. Kunze, P. (1979) Apposition and superposition eyes. In: Handbook of Sensory Physiology. Vol. VII/6A. Ed., H. Autrum. Berlin, Springer-Verlag, pp. 441–503.Google Scholar
  91. Labhart, T. (1980) Specialized photoreceptors at the dorsal rim of the honeybee’s compound eye: polarizational and angular sensitivity. J. Comp. Physiol. 141: 19–30.Google Scholar
  92. Labhart, T., Meyer, E.P. (1980) Ultrastructural and electrophysiological studies on a specialized area of the honey bee’s eye. Experientia 36: 698.Google Scholar
  93. Land, M.F. (1981a) Optics and vision in invertebrates. In: Handbook of Sensory Physiology. Vol. VII/6B. Ed., H. Autrum, Berlin, Springer-Verlag, pp. 471–595.Google Scholar
  94. Land, M.F. (1981b) Optics of the eyes of Phronima and other deep-sea amphipods, J. Comp. Physiol. 145: 209–226.Google Scholar
  95. Laughlin, S.B. (1976) The sensitivities of dragonfly photoreceptors and the voltage gain of transduction. J. Comp. Physiol. Ills 221–247.Google Scholar
  96. Laughlin, S.B. (1981) Neural principles in the visual system. In: Handbook of Sensory Physiology. Vol. VII/6B. Ed., H. Autrum. Berlin, Springer-Verlag, pp. 133–281.Google Scholar
  97. Laughlin, S., McGinness, S. (1978) The structures of dorsal and ventral regions of a dragonfly retina. Cell Tiss. Res. 188: 427–447.Google Scholar
  98. Leggett, L.M.W. (1976) Polarized light-sensitive interneurons in a swimming crab. Nature 262: 709–711.Google Scholar
  99. Leggett, L.M.W. (1978) Some visual specializations of a crustacean eye. Ph.D. Thesis. Australian National University. 140 pp.Google Scholar
  100. Lindauer, M. & Martin, H. (1968) Die Schwereorientierung der Bienen unter dem Einfluss des Erdmagnetfelds. Z. Vergl. Physiol. 60: 219–243.Google Scholar
  101. Ludtke, H. (1957) Beziehungen des Feinbaues im Ruckenschwimmer- auge zu seiner Fähigkeit, polarisiertes Licht zu analysieren. Z. Vergl. Physiol. 40s 329–344.Google Scholar
  102. Lythgoe, J.N. (1966) Visual pigments and underwater vision. In: Light as an Ecological Factor. Eds., G.C. Evans, R. Bain-bridge, O. Rackham. Oxford, Blackwell Scientific Publications, pp. 375–391.Google Scholar
  103. Lythgoe, J.N. (1972) The adaptation of visual pigments to the photic environment. In: Handbook of Sensory Physiology, Vol. VII/1. Photochemistry of Vision. Ed., H.J.A. Dartnall, Berlin, Springer-Verlag, pp. 566–603.Google Scholar
  104. Lythgoe, J.N. (1979) The Ecology of Vision. Oxford, Clarendon Press, 244 pp.Google Scholar
  105. Macnab, Robert M. (1978) Bacterial motility and chemotaxis: the molecular biology of a behavioral system. CRC Crit. Rev. Biochem. 5: 291–341.Google Scholar
  106. Martin, F.G., Mote, M.I. (1980) An equivalent circuit for the quantitative description of inter-receptor coupling in the retina of the desert ant Cataglyphis bicolor. J. Comp. Physiol. 139: 277–285.Google Scholar
  107. Martin, H., Lindauer, M. (1981) The orientation of bees in the earth’s magnetic field. In: Sense Organs. Eds., M.S. Laverack, D.J. Cosens, Glasgow, pp. 328–332.Google Scholar
  108. McCartney, E.J. (1976) Optics of the Atmosphere. New York, Wiley, 408 pp.Google Scholar
  109. McFarland, W.N., Munz, F.W. (1975) The evolution of photopic visual pigments in fishes. III. Vision Res. 15: 1071–1080.Google Scholar
  110. Mclntyre, P., Snyder, A.W. (1978) Light propagation in twisted anisotropic media: application to photoreceptors. J. Opt. Soc. Am. 68: 149–157.Google Scholar
  111. Mclntyre, P., Eirschfeld, K. (1981) Absorption properties of a photostable pigment (P456) in Rhabdomere 7 of the fly. Comp. Physiol. 143: 3–15.Google Scholar
  112. Meinecke, C.C. (1981) The fine structure of the compound eye of the African armyworm moth, Spodoptera exempta Walk. ( Lepidoptera, Noctuidae). Cell Tissue Res. 216: 333–347.Google Scholar
  113. Meinecke, C.C., Langer, H. (1982) Structural reactions to polarized light of microvilli in photoreceptor cells of the moth Spodoptera. Cell Tissue Res 226: 225–229.Google Scholar
  114. Menzel, R. (1979) Spectral sensitivity and color vision in invertebrates. In: Handbook Sensory Physiology VII/6A. Ed., H. Autrum. Berlin, Springer Verlag, pp. 502–580.Google Scholar
  115. Menzel, R., Blakers, M. (1975) Functional organization of an insect ommatidium with fused rhabdom. Cytobiologie 11: 279–298.Google Scholar
  116. Menzel, R., Snyder, A.W. (1974) Polarized light detection in the bee, Apis mellifera. J. Comp. Physiol. 88: 247–270.Google Scholar
  117. Messenger, J.B. (1981) Comparative physiology of vision in molluscs. In: Handbook of Sensory Physiology, VII/6C. Ed., H. Autrum, Berlin, Springer-Verlag, pp. 93–200.Google Scholar
  118. Meyer-Rochow, V. (1975) Larval and adult eye of the western rock lobster, Panulirus longjpes. Cell Tissue Res. 162: 439–457.Google Scholar
  119. Meyer-Rochow, V.B. (1981) Electrophysiology and histology of the eye of the bumblebee Bombus hortorum (L.) ( Hymenoptera: Api-dae). J.R. Soc. New Zealand 11: 123–153.Google Scholar
  120. Mikkelsen, P.M. (1981) Studies on euphausiacean crustaceans from the Indian River region of Florida. I. Systematics of the Stylocheiron longicorne species-group, with emphasis on reproductive morphology. Proc. Biol. Soc. Wash. 94: 1174–1204.Google Scholar
  121. Mollon, J.D. (1982) Color vision. Ann. Rev. Psychol. 33: 41–85.Google Scholar
  122. Moore, D., Rankin, M.A. (1983) Diurnal changes in the accuracy of the honeybee foraging rhythm. Biol. Bull. 164: 471–482.Google Scholar
  123. Mote, M.I., Wehner, R. (1980) Functional characteristics of pho-toreceptors in the compound eye and ocellus of the desert ant, Cataglyphis bicolor. J. Comp. Physiol. 137: 63–71.Google Scholar
  124. Münz, F.W., McFarland, W.N. (1977) Evolutionary adaptations of fishes to the photic environment. In: Handbook of Sensory Physiology, Vol. VII/5. The Visual System invertebrates. Ed., F. Crescitelli, Berlin, Springer-Verlag, pp. 193–274.Google Scholar
  125. Nk’ssel, D.R. (1976). The retina and retinal projection on lamina ganglionaris of the crayfish Pacifastacus leniusculus (Dana). J. Comp. Neurol. 167: 341–360.Google Scholar
  126. Nassel, D.R., Waterman, T.H. (1977) Golgi EM evidence for visual information channelling in the crayfish lamina ganglionaris. Brain Res. 130: 556–563.Google Scholar
  127. Nassel, D.R., Waterman, T.H. (1979) Massive diurnally modulated photoreceptor membrane turnovers in crab light and dark adaptation. J. Comp. Physiol. 135: 205–216.Google Scholar
  128. Ninomiya, N., Tominaga, T. & Kuwabara, M. (1969) The fine structure of the compound eye of a damsel fly. Z. Zellforsch. 98: 17–32.Google Scholar
  129. Odselius, R., Nilsson, D.-E. (1983) Regionally different ommatidial structure in the compound eye of the water-flea Polyphemus (Cladocera, Crustacea). Proc. Roy. Soc. Lond. B 217: 177–189.Google Scholar
  130. Papermaster, D.S., Schneider, B.G. (1982) Biosynthesis and morphogenesis of outer segment membranes in vertebrate photoreceptor cells. In: Cell Biology of the Eye. Ed., D.S. McDevitt, New York, Academic Press, pp. 475–531.Google Scholar
  131. Parker, G.H. (1895) The retina and optic ganglion in decapods especially in Astacus. Mitth. Zool. Sta. Neapel 12: 1–73.Google Scholar
  132. Phillips, J.B., Waldvogel, J.A. (1982) Reflected light cues generate deflector-loft effect. In: Avian Navigation. Eds., F. Papi, H.G. Wallraff. Berlin, Springer Verlag, pp. 190–202.Google Scholar
  133. Piekos, W.B., Waterman, T.H. (1983) Nocturnal rhabdom cycling and retinal hemocyte functions in crayfish (Procambarus) compound eyes. I. Light microscopy. J. Exp. Zool. 225: 209–217.Google Scholar
  134. Prokopy, R.H., Owens, E.D. (1983) Visual detection of plants by herbivorous insects. Ann. Rev. Entomol. 28: 337–364.Google Scholar
  135. Räber, F. (1979) Retinatopographie und Sehfeldtopologie des Komplexauges von Cataglyphis bicolor (Formicidae, Hymenoptera). Diss., Univ. Zürich. 121 pp.Google Scholar
  136. Reichardt, W.E., Poggio, T. (1980) Visual control of flight in flies. In: Theoretical Approaches to Neurobiology. Eds., W. E. Reichardt and T. Poggio. Cambridge, MIT Press, pp. 135–150.Google Scholar
  137. Ribi, W.A. (1979) Do the rhabdomeric structures in bees and flies really twist? J. Comp. Physiol. 134: 109–112.Google Scholar
  138. Ribi, W.A. (1980) New aspects of polarized light detection in the bee in view of non-twisting rhabdomeric structures. J. Comp. Physiol. 137: 281–285.Google Scholar
  139. Rossel, S., Wehner, R. (1982) The bee’s map of the e-vector pattern in the sky. Proc. Nat. Acad. Sei. USA. 79: 4451–4455.Google Scholar
  140. Rossel, S., Wehner, R., Lindauer, M. (1978) E-vector orientation in bees. J. Comp. Physiol. 125: 1–12.Google Scholar
  141. Schneider, L., Gogala, M., Draslar, E., Langer, H., Schlecht, P. (1978) Structure of the ommatidia and properties of the screening pigments in the compound eyes of Ascalaphus ( Insecta, Neuroptera). Cytobiologie. 16: 274–307.Google Scholar
  142. Schone, H. (1980) Orientierung im Raum. Stuttgart, Wissenschaftliche Verlagsgesellshaft, 377 pp.Google Scholar
  143. Schwind, R. (1983) A polarization-sensitive response of the flying water bug Notonecta glauca to UV light. J. Comp. Physiol. 150: 87–9lT ~~Google Scholar
  144. Seliger, H.H., Lall, A.B., Lloyd, J.E., Biggley, W.H. (1982a) The colors of firefly bioluminescence I. Optimization model. Photochem. Photobiol. 36: 673–680.Google Scholar
  145. Seliger, H.H., Lall, A.B., Lloyd, J.E., Biggley, W.H. (1982b) The colors of firefly bioluminescence. II. Experimental evidence for the optimization model. Photochem. Photobiol. 36: 681–688.Google Scholar
  146. Shaw, S.R. (1969) Sense-cell structure and interspecies comparisons of polarized light absorption in arthropod compound eyes. Vision Res. 9: 1031–1040.Google Scholar
  147. Shaw, S.R. (1981) Anatomy and physiology of identified non-spiking cells in the photoreceptor-lamina complex of the compound eye of insects, especially Diptera. In: Neurones Without Impulses. Eds., A. Roberts, B.M.H. Bush, Cambridge, Cambridge University Press, pp. 61–116.Google Scholar
  148. Shaw, S.R., Stowe, S. (1982) Photoreception. In: The Biology of Crustacea, Vol. 3. Ed., D.E. Bliss, New York, Academic Press, pp. 292–367.Google Scholar
  149. Silberglied, R.E. (1979) Communication in the ultraviolet. Ann. Rev. Evol. Syst. 10: 373–398.Google Scholar
  150. Smola, U., Tscharntke, H. (1979) Twisted rhabdomeres in the dipteran eye. J. Comp. Physiol. 133: 291–297.Google Scholar
  151. Smola, U., Wunderer, H. (1981a). Twisting of blowfly (Calliphora ervthrocephala Meigen) (Diptera, Calliphoridae) rhabdomeres: an in vivo feature unaffected by preparation of fixation. Int. J. Insect Morphol. and Embryol. 10: 331–344.Google Scholar
  152. Smola, U. & Wunderer, H. (1981b) Fly rhabdomeres twist in vivo. J. Comp. Physiol. 142: 43–49.Google Scholar
  153. Snyder, A.W. (1973) Polarization sensitivity of individual retinula cells. J. Comp. Physiol. 83: 331–360.Google Scholar
  154. Snyder, A.W. (1979) The physics of vision in compound eyes. In: Handbook of Sensory Physiology. Vol. VII/6A. Ed., H. Autrum. Berlin, Springer-Verlag, pp. 225–315.Google Scholar
  155. Snyder, A.W., Laughlin, S.B. (1975) Dichroism and absorption by photoreceptors. J. Comp. Physiol. 100: 101–116.Google Scholar
  156. Sommer, E.W. (1979) Untersuchungen zur topografischen Anatomie der Retina und zur Sehfeldtopologie im Auge der Honigbiene, Apis mellifera (Hymenoptera). Ph.D. Thesis, Univ. Zurich. 180 pp.Google Scholar
  157. Stark, W.S., Carlson, S.D. (1982) Ultrastructural pathology of the compound eye andQ#P;tic neuropiles of the retinal degeneration mutant (w rdgBKS222) Drosophila melanogaster. Cell Tissue Res. 225: 11–22.Google Scholar
  158. Stowe, S. (1980) Rapid synthesis of photoreceptor membranes and assembly of new microvilli in a crab at dusk. Cell Tissue Res. 211: 419–440.Google Scholar
  159. Strausfeld, N.J., Nässei, D.R. (1981) Neuroarchitecture of brain regions that subserve the compound eyes of Crustacea and insects. In: Handbook of Sensory Physiology. Vol. VII/6B. Ed., H. Antrum. Berlin, Springer-Verlag, pp. 1–132.Google Scholar
  160. Vogt, K. (1983) Is the fly visual pigment a rhodopsin? Z. Naturforsch. 38c: 329–333.Google Scholar
  161. Vogt, K., Kirschfeld, K. (1983) Sensitizing pigment in the fly. Biophys. Struct. Mech. 9: 319–328.Google Scholar
  162. Wachmann, E. (1979) Untersuchungen zur Feinstruktur der Augen von Bockkäfern ( Coleoptera, Cerambycidae). Zoomorphologie 92: 19–48.Google Scholar
  163. Wada, S. (1974a) Spezielle randzonale Qmmatidien der Fliegen (Diptera: Brachycera ): Architektur und Verteilung. Z. Morphol. Tiere. 77: 87–125.Google Scholar
  164. Wada, S. (1974b) Spezielle randzonale Qmmatidien von Calliphora ervthrocephala Meig. (Diptera, Calliphoridae ): Architektur der zentralen Rhabdomeren-Kolumne und Topographie im Komplexauge. Int. J. Insect Morphol. Embryol. 3: 397–424.Google Scholar
  165. Wada, S. (1975) Morphological duality of the retinal pattern in flies. Experientia 31: 921–923.Google Scholar
  166. Waterman, T.H. (1966a) Information channeling in the crustacean retina. In: Proceedings of the symposium on information processing in sight sensory systems. Ed., P.W. Nye. Pasadena, California Institute of Technology, pp. 48–56.Google Scholar
  167. Waterman, T.H. (1966b) Specific effects of polarized light on organisms. In: Environmental Biology, Eds., P.L. Altman and D.S. Dittmer, Bethesda, Fed. Am. Soc. Exp. Biol., pp. 155–165.Google Scholar
  168. Waterman, T.H. (1966c) Systems analysis and the visual orientation of animals. Am. Sei. 54: 15–45.Google Scholar
  169. Waterman, T.H. (1968) Systems theory and biology—view of a biologist. In: Systems Theory and Biology. Ed., M.D. Mesarovic. New York, Springer-Verlag, pp. 1–37.Google Scholar
  170. Waterman, T.H. (1973) Responses to polarized light: Animals. In: Biology Data Book (Edition 2), vol. 2. Eds., P.L. Altman, D.S. Dittmer. Bethesda, Fed. Amer. Soc. Exp. Biol., pp. 1272–1289.Google Scholar
  171. Waterman, T.H. (1975a) Natural polarized light and e-vector dis-crimination by vertebrates. In: Light as an Ecological Factor: II. Eds., 6.C. Evans, R. Bainbridge, O. Rackham, Oxford, Blackwell, pp. 305–335.Google Scholar
  172. Waterman, T.H. (1975b) The optics of polarization sensitivity. In: Photoreceptor Optics. Eds., A.W. Snyder and R. Menzel. Berlin, Springer-Verlag, pp. 339–371.Google Scholar
  173. Waterman, T.H. (1977) The bridge between visual input and central programming in crustaceans. In: Identified Neurons and Behavior in Arthropods. Ed., G. Hoyle. New York, Plenum, pp. 371–386.Google Scholar
  174. Waterman, T.H. (1981) Polarization sensitivity. In: Handbook of Sensory Physiology. Vol. VII/6B. Ed., H. Autrum. Berlin, Springer-Verlag, pp. 281–471.Google Scholar
  175. Waterman, T.H. (1982) Fine structure and turnover of photoreceptor membranes. In: Visual Cells in Evolution. Ed., J. Westfall. New York, Raven, pp. 23–41.Google Scholar
  176. Waterman, T.H., Aoki, K. (1974) E-vector sensitivity patterns in the goldfish optic tectum. J. Comp. Physiol. 95: 13–27.Google Scholar
  177. Waterman, T.H., Fernandez, H.R. (1970) E-vector and wavelength discrimination by retinular cells of the crayfish Procambarus. Z. Vergl. Physiol 68: 154–174.Google Scholar
  178. Waterman, T.H., Horch, K.W. (1966) Mechanism of polarized light perception. Science. 154: 467–475.Google Scholar
  179. Waterman, T.H., Piekos, W.B. (1983) Nocturnal rhabdom cycling and retinal hemocyte functions in crayfish (Procambarus) compound eyes. II. Transmission electron microscopy and acid phosphatase localization. J. Exp. Zool. 225: 219–231.Google Scholar
  180. Waterman, T.H., Wiersma, C.A.G. (1963) Electrical responses in decapod crustacean visual systems. J. Cell. Comp. Physiol. 61: 1–16.Google Scholar
  181. Waterman, T.H., Fernandez, H.R., Goldsmith, T.H. (1969) Dichroism of photosensitive pigment in rhabdoms of the crayfish Orconectes. J. Gen. Physiol. 54: 415–432.Google Scholar
  182. Wehner, R. (1976) Structure and function of the peripheral pathway in hymenopterans. In: Neuronal Principles in Vision. Eds., F. Zettler & R. Weiler. Berlin, Springer-Verlag, pp. 280–333.Google Scholar
  183. Wehner, R. (1981) Spatial vision in arthropods. In: Handbook of Sensory Physiology. Vol. VII/6C. Ed., H. Autrum. Berlin, Springer-Verlag, p. 287–617.Google Scholar
  184. Wehner, R. (1982) Himmelsnavigation bei Insekten. Neurophysiologie und Verhalten. Neujahrsbl. Naturf. Ges. Zürich 184: 1–132.Google Scholar
  185. Wehner, R., Bernard, G.D. (1980) Intracellular optical physiology of the bee’s eye. II. Polarizational sensitivity. J. Comp. Physiol. 137: 205–214.Google Scholar
  186. Wehner, R., Meyer, E. (1981) Rhabdomeric twist in bees - artefact or in vivo structure? J. Comp. Physiol. 142: 1–17.Google Scholar
  187. Wehner, R., Srinivasan, M.V. (1981) Searching behavior of desert ants, genus Cataglyphis ( Formicidae, Hymenoptera). J. Comp. Physiol. 142: 315–338.Google Scholar
  188. Wehrhahn, C. (1976) Evidence for the role of receptors R7/8 in the orientation behaviour of the fly. Biol. Cybern. 21: 213–220.Google Scholar
  189. Wellington, W.G. (1974) A special light to steer by. Nat. Hist. 83: 46–53.Google Scholar
  190. Wellington, W.G., Fitzpatrick, S.M. (1981) Territoriality in the drone fly, Eristalis tenax ( Diptera: Syrphidae). Can. Entomologist. 113: 695–704.Google Scholar
  191. Wellington, W.G., Sullivan, C.R. & Henson, W.R. (1951) Polarized light and body temperature level as orientation factors in the light reactions of some hymenopterous and lepidopterous larvae. Can. J. Zool. 29: 339–351.Google Scholar
  192. Wiersma, C.A.G. & Yamaguchi, T. (1966) The neuronal components of the optic nerve of the crayfish as studied by single unit analysis. J. Comp. Neurol. 128: 333–358.Google Scholar
  193. Williams, D.S. (1981) Twisted rhabodmeres in the compound eye of a tipulid fly ( Diptera ). Cell Tissue Res. 217: 625–632.Google Scholar
  194. Williams, D.S. (1982) Ommatidial structure in relation to turnover of photoreceptor membrane in the locust. Cell Tissue Res. 225: 595–617.Google Scholar
  195. Wilson, R.S. (1977) Light elicited behavior of the marine dinoflagellate, Ceratium dens. Ph.D. Thesis, University of California, Santa Barbara. 160 pp.Google Scholar
  196. Wolf, R., Gebhardt, B., Gademann, R., Heisenberg, M. (1980) Polarization sensitivity of course control in Drosophila melanogaster. J. Comp. Physiol. 139: 177–191.Google Scholar
  197. Wunderer, H., Smola, U. (1982a) Fine structure of ommatidia at the dorsal eye margin of Calliphora erythrocephala Meigen (Diptera:Calliphoridae): an eye region specialized for the detection of polarized light. Int. J. Insect Morphol. Embryol. 11: 25–38.Google Scholar
  198. Wunderer, H., Smola, U. (1982b) Morphological differentiation of the central visual cells R7/8 in various regions of the blowfly eye. Tissue and Cell 14: 341–358.Google Scholar
  199. Yamaguchi, T. (1967) Mechanism of polarized light perception and its neural processes through the optic nerves in crayfish. Zool. Mag. 76: 443 (Abstr.)Google Scholar
  200. Yamaguchi, T., Katagiri, Y., Ochi, K. (1976) Polarized light responses from retinula cells and sustaining fibers in the mantis shrimp. Biol. J. Okayama Univ. 17: 61–66.Google Scholar
  201. Young, R.W. (1978) Visual cells, daily rhythms, and vision research. Vision Res. 18: 573–578.Google Scholar
  202. Zeil, J. (1983) Sexual dimorphism in the visual system of flies: the divided brain of male Bibionidae ( Diptera ). Cell Tissue Res. 229: 591–610.Google Scholar
  203. Zrenner, E. (1983) Neurophysiological Aspects of Color Vision in Primates. Berlin, Springer-Verlag, 218 pp.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Talbot H. Waterman
    • 1
  1. 1.Department of BiologyYale UniversityNew HavenUSA

Personalised recommendations