• M. A. Ali
Part of the NATO ASI Series book series (NSSA, volume 74)


As mentioned in the Prologue, about 97% of the animal species are invertebrate ones. If the number of individuals could even be guessed, it would probably represent over 99,5%. Such a rich source of material presents also insurmountable problems for its study. Let me first enumerate the positive aspects. The extraordinarily wide taxonomic variety offered by the invertebrates permits not only the study of evolutionary aspects but also comparative and developmental ones. The fact that they occupy every conceivable habitat makes them the material of choice for studying adaptive features. The incredible diversity that one encounters in their structures allows the choice of particular structures for investigating a particular problem in physiology or experimental biology. These same advantages also pose the “insurmountable” problems referred to above. For example, it will be impossible to study the photoreceptors of the nearly million species. Also, it will be nearly impossible to collect them from all the habitas in which they occur and keep alive in the laboratory. Thus, the solution would appear to be to select judiciously representatives of different taxa inhabiting different habitats and having different habits and structures, depending on the question that one is trying to answer or, a problem to solve. Obviously, in this context it may be superfluous to mention that the criteria for selection would and should vary according not only to the problem but also the group that one is interested in.


Spectral Sensitivity Visual Pigment Outer Plexiform Layer Polarisation Sensitivity Silk Moth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bernard, G.D. & Stavenga, D.G. (1979) Spectral sensitivities of retinular cells measured in intact living flies by an optical method. J. Comp. Physiol. 134: 95–107.CrossRefGoogle Scholar
  2. Bizzi, E, Kalil, R.E., Morasso, P. & Tabliasco, V. (1972) Central programming and peripheral feedback during eye-head coordination in monkeys. Bibliotheca Ophthal. 82: 220 – 232.Google Scholar
  3. Blest, A.D. (1978) The rapid synthesis and destruction of photoreceptor membrane by a dinopid spider: A daily cycle. Proc. R. Soc. Lond. 200B: 463–483CrossRefGoogle Scholar
  4. Brown, P.K., Wald, G (1964) Visual pigments in single rods and cones of the human retina. Science 144: 45 – 52.CrossRefGoogle Scholar
  5. Buchner, E. (1983) Behavioural analysis of spatial vision in insects (This volume).Google Scholar
  6. Buchner, E., Buchner, S. (1983) Neuroanatomjcal mapping of visually induced nervous activity in insects by 3H-deoxyglucose (This volume).Google Scholar
  7. Burr, A.H. (1983 a) Evolution of eyes and photoreceptor organelles in the lower phyla (This volume).Google Scholar
  8. Burr, A.H. (1983 b) Photomovement behavior in simple invertebrates (This volume).Google Scholar
  9. Burr, A.H., Webster, J.M. (1971) Morphology of the eyespot and description of two pigment granules in the esophageal muscle of a marine nematode, Oncholaimus vesicarius. J. Ultrastruct. Res. 36: 621–632.CrossRefGoogle Scholar
  10. Clément, P., Wurdak, E. (1983) Photoreceptors and photoreception in rotifers (This volume).Google Scholar
  11. Couillard, P. (1983) Photoreception in Protozoa, an overview (This volume).Google Scholar
  12. Dietrich, W. (1909) Die Facettenaugen der Dipteren. Z. wiss. Zool. 92: 465–539.Google Scholar
  13. Fauvel, P., Avel, M., Harant, H., Grassé, P., Dawydoff, C. (1959) Embranchement des Annélides. In: Traité de Zoologie, Vol. 5, Pt. 1. Ed. P. Grassé. Paris, Masson et Cie. p. 3 – 686.Google Scholar
  14. Fleissner, G. ( 1977 a) Entrainment of the scorpion’s circadian rhythm via the median eyes. J. Comp. Physiol. 118: 93–99.Google Scholar
  15. Fleissner, G. ( 1977 b) Scorpion lateral eyes: Externally sensitive receptors of Zeitgeber stimuli. J. Comp. Physiol. 118: 101–108.CrossRefGoogle Scholar
  16. Fournier, A. (1983) Photoreceptors and photosensitivity in platyhel- minthes (This volume).Google Scholar
  17. Franceschini, N. (1983) The retinal mosaic of the fly compound eye (This volume).Google Scholar
  18. Franceschini, N., Hardie, R., Ribi, W., Kirschfeld, K. (1981) Sexual dimorphism in a photoreceptor. Nature (Lond.) 291: 241 – 244.CrossRefGoogle Scholar
  19. Geiger, G., Poggio, T. (1977) On head and body movements of flying flies. Biol. Cybern. 25: 177–180.CrossRefGoogle Scholar
  20. Goto, T., Yoshida, M. (1983) Photoreception in Chaetognatha (This volume).Google Scholar
  21. Hausen, K. (1983) The lobula-complex of the fly: Structure, function and significance in visual behaviour (This volume).Google Scholar
  22. Hawryshyn, C.W., Mackay, W.C., Nilsson, T H. (1982) Methyl mercury induced visual deficits in rainbow trout. Can. J. Zool. 60: 3127 3133Google Scholar
  23. Hesse, R. (1902) Untersuchen über die Organe der Lichtempfindung bei neideren. Thieren. VIII Weitere Thatsachen. Allgemeines. Z. wiss. Zool. 72: 565–656.Google Scholar
  24. Kampa, E.M. (1955) Euphausiopsin, a new photosensitive pigment from the eye of euphausiid crustaceans. Nature (Lond.) 175: 966 – 998.CrossRefGoogle Scholar
  25. Kampa, E.M., Boden, B.D. (1957) Light generation in a sonic scattering layer. Deep Sea Res. 4: 73 – 92.CrossRefGoogle Scholar
  26. Lall, A.B., Chapman, R.M., Trouth, C.O. & Holloway, J.A. (1980 a) Spectral mechanisms of the compound eye in the firefly Photinus pyralis (Cleoptera: Lampyridae). J. Comp. Physiol. 135A: 21–27CrossRefGoogle Scholar
  27. Lall, A.B., Seliger, H.H., Biggley, W.H., Lloyd, 3.E. (1980 b) Ecology of colors of firefly bioluminescence. Science 210: 560–562.Google Scholar
  28. Land, M F (1966) Image formation by a concave reflector in the eye of the scallop, Pecten maximus. J. Exp. Biol. 45: 438–447.Google Scholar
  29. Land, M.F. (1983 a) Crustacea (This volume).Google Scholar
  30. Land, M.F. (1983 b) Mollusca (This volume).Google Scholar
  31. Langer, H. Hamann, B. & Meinecke, C.C. (1979) Tetrachromatic visual system in the moth Spodoptera exempta (Insecta: Noctuidae). J. Comp. Physiol. 129: 235–239.CrossRefGoogle Scholar
  32. Laughlin, S. (1983) The roles of parallel channels in early visual processing by the arthropod compound eye (This volume).Google Scholar
  33. Levine, J.S., MacNichol, E.F. (1982) Color vision in fishes. Sei. Am 246: 140–149Google Scholar
  34. Meinertzhagen, I.A (1983) The rules of synaptic assembly in the developing insect lamina. (This volume).Google Scholar
  35. Menzies R.J., George, R.Y. & Rowe, G.T. (1973) Abyssal Environment and Ecology of the World Oceans. New York, Wiley (Interscience). 488 pagesGoogle Scholar
  36. Miller, W.H. (Ed.) (1981) Molecular Mechanisms of Photoreceptor Transduction. Current Topics in Membranes and Transport, Vol. 15. New York, Academic Press. 452 pages.Google Scholar
  37. Munoz-Cuevas, A. (1983) Photoreceptor structures and vision in arachnids and myriapods (This volume).Google Scholar
  38. Mouze, M. (1983) Morphologie et dévelopment des yeux simples et composes des insectes (This volume).Google Scholar
  39. Page, T.L. & Larimer, J.L. (1972) Entrainment of the circadian locomotor activity in crayfish. J. Comp. Physiol. 78: 107–120.CrossRefGoogle Scholar
  40. Packer, L. (Ed.) (1982) Visual Pigments and Purple Membranes. I. Methods in Enzymology, Vol. 81 Biomembranes Part H. New York, Academic Press. 902 pages.Google Scholar
  41. Pearse, J.S., Pearse, V.B. (1978) Vision in Cubomedusan jellyfishes. Science 199: 458.CrossRefGoogle Scholar
  42. Penn P E. & Alexander, C.G. (1980) Fine structure of the optic cushion in the asteroid Nepanthia belcheri. Mar. Biol. 58: 251–256.CrossRefGoogle Scholar
  43. Reuter, T.E. & White, R.H. & Wald, G. (1971) Rhodopsin and porphyropsin fields in the adult bullfrog retina. J. Comp. Physiol. 58: 351–371.Google Scholar
  44. Rice, D.C. & Gilbert, S.C. (1980) Early chronic exposure to methyl-mercury in monkeys: Effects on spatial vision. Fed. Proc. Fed. Am. Soc. Exp. Biol. 39: 678.Google Scholar
  45. Rice, D.C., Gilbert, S.C. (1982) Early chronic low-level methylmercury poisoning in monkeys impairs spatial vision. Science 216: 759 – 761.CrossRefGoogle Scholar
  46. Stavenga, D.G., Schwemer, J. (1983) Visual pigments of invertebrates (This volume).Google Scholar
  47. Strausfeld, N.J. (1983) Functional neuroanatomy of the blowfly’s visual system (This volume).Google Scholar
  48. Toyoda, J., Nosaki, H. & Tomita T. (1969) Light induced resistence changes in single photoreceptors of Necturus and Gekko. Vision Res. 9: 435 – 463.CrossRefGoogle Scholar
  49. Truman, J.W. (1974) Physiology of insect rhythms. IV Role of brain in the regulation of light rhythms of the giant silkmoths. J. Comp. Physiol. 95: 281–296.CrossRefGoogle Scholar
  50. Verger-Bocquet, M. (1983) Photoreception et vision chez les annelides (This volume).Google Scholar
  51. Wagner H.J. (1978) Cell types and connectivity patterns in mosaic retinas. Adv. Anat. Embroyl. Cell Biol. 55 (3): 1 – 81.Google Scholar
  52. Waterman, T.H. (1983) Natural polarized light and vision (This volume).Google Scholar
  53. Westfall, J.A. (Ed.) (1982) Visual Cells in Evolution. New York, Raven Press. 161 pages.Google Scholar
  54. Wolken, J.J. (1975) Photoresponses, Photoreceptors and Evolution. New York, Academic Press. 317 pages.Google Scholar
  55. Yoshida, M. & Takasu, N., Tamotsu, S. (1983) Photoreception in echinoderms (This volume).Google Scholar
  56. Young, J.Z. (1964) A Model of the Brain. Oxford, Clarendon. 348 pages.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • M. A. Ali
    • 1
  1. 1.Département de BiologieUniversité de MontréalMontréalCanada

Personalised recommendations