Skip to main content

Part of the book series: NATO ASI Series ((NSSA,volume 74))

Abstract

An understanding of the photopigments is indispensable as, the primary process in photoreception starts with the absorption of light quanta by the photopigment molecules, which in turn triggers the long train of the visual process: molecular transformation, production of transmitter, ionic movements, and often substantial structural changes within the visual cells. Subsequently synaptic transmission of the electric signal to higher order neurons occurs and eventually a behavioural response is elicited, all this being the result of the initial absorption of light quanta.

And how exceeding curious and fubrile must the component parts of the medium that conveys light be, when we find the instrument made for its reception or refraction to be so exceedingly small? we may, I think, from this speculation be sufficiently discouraged from hoping to discover by any optick or other instrument the determinate bulk of the parts of the medium that conveys the pulse of light, Robert Hooke; Micrographia p. 180; 1667.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ali, M.A. (1975) Temperature and vision. Rev. Can. Biol. 34: 131–186.

    Google Scholar 

  • Autrum, H. (1981) Light and dark adaptation in invertebrates. In: Handbook of Sensory Physiology, Vol. VII/6C. Ed. H. Autrum. Berlin, Heidelberg, New York, Springer, p. 1–91.

    Google Scholar 

  • Bader, C.R., Baumann, F., Bertrand, D., Carreras, J. & Fuortes, G. (1982). Diffuse and local effects of light adaptation in photoreceptors of the honey bee drone. Vision Res. 22: 311–317.

    Google Scholar 

  • Bernard, G.D. (1977) Discovery of red-receptors in butterfly retinas. Invest. Ophthalmol. Vis. Sei. 16: Suppl. 61.

    Google Scholar 

  • Bernard, G.D. (1979) Red-absorbing visual pigment of butterflies. Science 203: 1125–1127.

    Google Scholar 

  • Bernard, G.D. (1979) Red-absorbing visual pigment of butterflies. Science 203: 1125–1127.

    Google Scholar 

  • Bernard, G.D. (1982) Noninvasive optical techniques for probing insect photoreceptors. Meth. Enzymol. 81 (Part H): 752–763.

    Google Scholar 

  • Bernard, G.D. (1983) Bleaching of photoreceptors in eyes of intact butterflies. Science 219: 69–71.

    Google Scholar 

  • Bernard, G.D. & Stavenga, D.G. (1978) Spectral sensitivities of retinular cells measured in intact, living bumblebees by an optical method. Naturwissenschaften 65: 442–443.

    Google Scholar 

  • Bernard, G.D. & Stavenga, D.G. (1979) Spectral sensitivities of retinular cells measured in intact, living flies by an optical method. J. Comp. Physiol. 134: 95–107.

    Google Scholar 

  • Bernard, G.D. & Wehner, R. (1980) Intracellular optical physiology of the bee’s eye. I. Spectral sensitivity. J. Comp. Physiol. 137: 193–203.

    Google Scholar 

  • Bertrand, D., Fuortes, G. & Muri, R. (1979) Pigment transformations and electrical responses in retinula cells of drone, Apis mellifera ♂. J. Physiol. 296: 431–441.

    Google Scholar 

  • Blest,A.D. (1978) The rapid synthesis and destruction of photoreceptor membrane by a dinopid spider: a daily cycle. Proc. R. Soc. Lond. 200B: 463–483.

    Google Scholar 

  • Blest,A.D. (1980) Photoreceptor membrane turnover in arthropods: comparative studies of breakdown processes and their implication. In: The Effects of Constant Light on Visual Processes. Ed. T.P. Williams and B.N. Baker. New York, Plenum Press, p. 217–245.

    Google Scholar 

  • Blest,A.D. (1980) Photoreceptor membrane turnover in arthropods: comparative studies of breakdown processes and their implication. In: The Effects of Constant Light on Visual Processes. Ed. T.P. Williams and B.N. Baker. New York, Plenum Press, p. 217-245.

    Google Scholar 

  • Blest,A.D. & Day, W.A. (1978) The rhabdomere organization of some nocturnal spiders in light and darkness. Phil. Trans. R. Soc. Lond. 283B: 1–23.

    Google Scholar 

  • Boucher, F. & Leblanc, R.M. (1981) Photoacoustic spectroscopy of cattle visual pigment at low temperature. Biochem. Biophys. Res. Comm. 100: 385–390.

    Google Scholar 

  • Briggs, M.H. (1961) Visual pigment of grapsoid crabs. Nature (Lond.) 190: 784–786.

    Google Scholar 

  • Brown, P.K. & Brown, P.S. (1958) Visual pigments of the octopus and cuttlefish. Nature (Lond.) 182: 1288–1290.

    Google Scholar 

  • Brown, P.K. & White, R.H. (1972) Rhodopsin of the larval mosquito. J. Gen. Physiol. 59: 401–414.

    Google Scholar 

  • Bruno, M.S., Barnes, S.N. & Goldsmith, T.H. (1977) The visual pigment and visual cycle of the lobster Homarus. J. Comp. Physiol. 120: 123–142.

    Google Scholar 

  • Bruno, M.S. & Goldsmith, T.H. (1974) Rhodopsin of the blue crab Callinectes: evidence for absorption differences in vitro and in vivo. Vision Res. 14: 653 – 658.

    Google Scholar 

  • Callender, R.H. & Honig, B. (1977) Resonance Raman studies of visual pigments. Ann. Rev. Biophys. Bioeng. 6: 33–55.

    Google Scholar 

  • Cone,R.A. & Pak, W.L. (1971) The early receptor potential. In: Handbook of Sensory Physiology, Vol. 1. Ed. W.R. Loewenstein. Berlin, Heidelberg, New York, Springer, p. 345–365.

    Google Scholar 

  • Cornwall, M.C. & Gorman, A.L.F. (1979) Thermally stable photointerconvertible pigment states in scallop photoreceptor. Invest. Ophthalmol. (Suppl.) 16: 177.

    Google Scholar 

  • Cronin, T.W. & Goldsmith, T.H. (1981) Fluorescence of crayfish metarhodopsin studied in single rhabdoms. Biophys. J. 35: 653–664.

    Google Scholar 

  • Cronin, T.W. & Goldsmith, T.H. ( 1982 a) Photosensitivity spectrum of crayfish rhodopsin measured using fluorescence of metarhodopsin. J. Gen. Physiol. 79: 313–332.

    Google Scholar 

  • Cronin, T.W. & Goldsmith, T.H. (1982b) Quantum efficiency and photosensitivity of the rhodopsin £ metarhodopsin conversion in crayfish photoreceptors. Photochem. Photobiol. 36: 447–554.

    Google Scholar 

  • Dartnall, H.J.A. (1953) The interpretation of spectral sensitivity curves. Br. Med. Bull. 9: 24–30.

    Google Scholar 

  • Denys, C.J. & Brown, P.K. (1982) Euphausiid visual pigments: the rhodopsins of Euphausia superba and Meganyctiphanes norvegica (Crustacea, Euphausiacea). J. Gen. Physiol. 80: 451–472.

    Google Scholar 

  • Doukas, A.G., Stefancic, V., Suzuki, T., Callender, R.H. & Alfano, R.R. (1980) Squid bathorhodopsin forms within 10 picoseconds. Photobio- chem. Photobiophys. Is 305–308.

    Google Scholar 

  • Ebina, Y., Nagasawa, N. & Tsukahara, Y. (1975) An intermediate in the photolytic process of extracted squid rhodopsin. Jap. J. Physiol. 25: 217–226.

    Google Scholar 

  • Ebrey, T.G. & Honig, B. (1977) New wavelength-dependent visual pigment nomograms. Vision Res. 17: 147–151.

    Google Scholar 

  • Eguchi, E. & Waterman, T.H. (1976) Freeze-etch and histochemical evidence for cycling in crayfish photoreceptor membranes. Cell. Tissue Res. 169: 419–434.

    Google Scholar 

  • Fernandez, H.R. (1965) A Survey of the Visual Pigments of Decapod Crustacea of South Florida. Ph.D. Thesis, University of Miami, Coral Gables, Florida.

    Google Scholar 

  • Franceschini, N. (1972) Sur le Traitement Optique de Information Visuelle dans I’Oeil a Facettes de la Drosophile. Thesis, Grenoble.

    Google Scholar 

  • Franceschini, N. (1975) Sampling of the visual environment by the compound eye of the fly: Fundamentals and applications. In: Photoreceptor Optics. Ed. A.W. Snyder & R. Menzel. Berlin, Heidel¬berg, New York, Springer, p. 98–125.

    Google Scholar 

  • Franceschini, N. (1977) In vivo fluorescence of the rhabdomeres in an insect eye. Proc. Int. Union Physiol. Sc. XIII, 237. XXVIIth Int. Congr. Paris.

    Google Scholar 

  • Franceschini, N. (1983a) In vivo microspectrofluorimetry of visual pigments. Symp. Soc. Exp. Biol. (In press).

    Google Scholar 

  • Franceschini, N. (1983b) The retinal mosaic of the fly compound eye. (This volume).

    Google Scholar 

  • Franceschini, N., Kirschfeld, K. & Minke, B. (1981) Fluorescence of photoreceptor cells observed in vivo. Science 213: 1264 - 1267.

    Google Scholar 

  • Frisch, K. von (1967) The Dance Language and Orientation of Bees. Cambridge, Belknap/Harvard University Press.

    Google Scholar 

  • Gemperlein, R., Paul, R., Lindauer, E. & Steiner, A. (1980) UV fine structure of the spectral sensitivity of flies visual cells, revealed by FIS ( Fourier Interferometric Stimulation ). Naturwissenschaften 67: 565–566.

    Google Scholar 

  • Gogala, M., Hamdorf, K. & Schwemer, J. (1970) UV-Sehfarbstoff bei Insekten. Z. vergl. Physiol. 70: 410–413.

    Google Scholar 

  • Goldman, L.J., Barnes, S.N. & Goldsmith, T.H. (1975) Microspectrophoto- metry of rhodopsin and metarhodopsin in the moth Galleria. J. Gen. Physiol. 66: 383–404.

    Google Scholar 

  • Goldsmith, T.H. (1972) The natural history of invertebrate visual pigments. In: Handbook of Sensory Physiology, Vol. VII/1. Ed. H.J.A. Dartnall. Berlin, Heidelberg, New York, Springer, p. 685–719.

    Google Scholar 

  • Goldsmith, T.H. (1975) Photoreceptor processes: some problems and perspectives. J. Exp. Zool. 194: 89-102.

    Google Scholar 

  • Goldsmith, T.H. (1978a) The spectral absorption of crayfish rhabdoms: Pigment, photoproduct and pH sensitivity. Vision Res. 18: 463–473.

    Google Scholar 

  • Goldsmith, T.H. & Bruno, M.S. (1973) Behaviour of rhodopsin and metarhodopsin in isolated rhabdoms of crabs and lobster. In: Biochemistry and Physiology of Visual Pigments. Ed. H. Langer. Berlin, Heidelberg, New York, Springer, p. 147–153.

    Google Scholar 

  • Goldsmith, T.H. & Bruno, M.S. (1973) Behaviour of rhodopsin and metarhodopsin in isolated rhabdoms of crabs and lobster. In: Biochemistry and Physiology of Visual Pigments. Ed. H. Langer. Berlin, Heidelberg, New York, Springer, p. 147 – 153.

    Google Scholar 

  • Hagins, W.A. & McGaughy, R.E. (1967) Molecular and thermal origins of fast photoelectric effects in squid retina. Science 157: 813–816.

    Google Scholar 

  • Gribakin, F.G. (1979) Cellular mechanisms of insect photoreception. Int. Rev. Cytol. 57: 127–184.

    Google Scholar 

  • Hagins, W.A. & McGaughy, R.E. (1967) Molecular and thermal origins of fast photoelectric effects in squid retina. Science 157: 813–816.

    Google Scholar 

  • Hamacher, K.J. & Kohl, K.D. (1981) Spectroscopical studies of the Astacus visual pigment. Biophys. Struct. Mech. 7: 338.

    Google Scholar 

  • Hamann, B. & Langer, H. (1980) Sehfarbstoffe im Auge des Wasserlauf er Gerris lacustris. Verh. Dtsch. Zool. G., p. 337.

    Google Scholar 

  • Hamdorf, K. (1979) The physiology of invertebrate visual pigments. In: Handbook of Sensory physiology, Vol. VII/6A. Ed. H. Autrum. Berlin, Heidelberg, New York, Springer, p. 145 – 224.

    Google Scholar 

  • Hamdorf, K., Gogala, M. & Schwemer, J. (1971) Beschleunigung der “Dunkeladaptation” eines UV-Rezeptors durch sichtbare Strahlung. Z. vergl. Physiol. 75: 189–199.

    Google Scholar 

  • Hamdorf, K. & Langer, H. (1965) Veränderungen der Lichtabsorption im Fazettenaugen bei Belichtung, Z. vergi. Physiol. 51: 172–184.

    Google Scholar 

  • Hamdorf, K. & Langer, H. (1965) Veränderungen der Lichtabsorption im Fazettenaugen bei Belichtung, Z. vergi. Physiol. 51: 172–184.

    Google Scholar 

  • Hamdorf, K., Paulsen, R. & Schwemer, J. (1973) Photoregeneration and sensitivity control of photoreceptors of invertebrates. In: Biochem¬istry and Physiology of Visual Pigments. Ed. H. Langer. Berlin, Heidelberg, New York, Springer, p. 155 – 166.

    Google Scholar 

  • Hamdorf, K., Paulsen, R., Schwemer, J. & Täuber, U. (1972) Photo- reconversion of invertebrate visual pigments. In: Information Processing in the Visual Systems of Arthropods. Ed. R. Wehner. Berlin, Heidelberg, New York, Springer, p. 97 – 108.

    Google Scholar 

  • Hamdorf, K. & Schwemer, J. (1975) Photoregeneration and the adaptation process in insect photoreceptors. In: Photoreceptor Optics. Ed. A.W. Snyder & R. Menzel. Berlin, Heidelberg, New York, Springer, p. 263 – 289.

    Google Scholar 

  • Hamdorf, K., Schwemer, J. & Täuber, U. (1968) Der Sehfarbstoff, die Absorption der Rezeptoren und die spektrale Empfindlichkeit der Retina von Eledone moschata. Z. vergi. Physiol. 60: 375–415.

    Google Scholar 

  • Hara, T. & Hara, R. (1966) Photosensitive pigments found in cephalopod retina. Zool. Mag. Tokyo 75: 264–269.

    Google Scholar 

  • Hara, T. & Hara, R. (1972) Cephalopod retinochrome. In: Handbook of Sensory Physiology, Vol. VII/1. Ed. H.J.A. Dartnall. Berlin, Heidelberg, New York, Springer, p. 720 – 746.

    Google Scholar 

  • Hara, T. & Hara, R. (1973) Biochemical properties of retinochrome. In: Biochemistry and Physiology of Visual Pigments. Ed. H. Langer. Berlin, Heidelberg, New York, Springer, p. 181 – 191.

    Google Scholar 

  • Hara, T. & Hara, R. (1982) Cephalopod retinochrome. Meth. Enzymol. 81 (Part H): 827 – 833.

    Google Scholar 

  • Hardie, R.C. (1979) Electrophysiological analysis of fly retina. I. Comparative properties of Rl-6 and R7 and R8. J. Comp. Physiol. 129: 19–33.

    Google Scholar 

  • Hardie, R.C., Franceschini, N. & Mein tyre, P.D. (1979) Electrophysiol¬ogical analysis of fly retina. II. Spectral mechanisms in R7 and R8. J. Comp. Physiol. 133: 23–39.

    Google Scholar 

  • Hays, D. & Goldsmith, T.H. (1969) Microspectrophotometry of the visual pigment of the spider crab Libinia emarginata. Z. vergi. Physiol. 65: 218–232.

    Google Scholar 

  • Helversen, O. von (1972) Zur spektralen Unterschiedsempfindlichkeit der Honigbiene. J. Comp. Physiol. 80: 439–472.

    Google Scholar 

  • Hertel, H. (1980) The compound eye of Artemia salina (Crustacea). II. Analysis by electrophysiological methods. Zool. Jb. Physiol. 84: 15–25.

    Google Scholar 

  • Hillman, P., Dodge, F.A., Hochstein, S., Knight, B.W. & Minke, B. (1973) Rapid dark recovery of the invertebrate early receptor potential. J. Gen. Physiol. 62: 77–86.

    Google Scholar 

  • Hillman, P., Hochstein, S. & Minke, B. (1972) A visual pigment with two physiologically active stable states. Science 175: 1486–1488.

    Google Scholar 

  • Horridge, G.A., Duniec, J. & Marçelja, L. (1981) A 24–hour cycle in single locust and mantis photoreceptors. J. Exp. Biol. 91: 307–322.

    Google Scholar 

  • Horridge, G.A., Duniec, J. & Marçelja, L. (1981) A 24-hour cycle in single locust and mantis photoreceptors. J. Exp. Biol. 91: 307–322.

    Google Scholar 

  • Horridge, G.A. & McLean, M. (1978) The dorsal eye of the mayfly Atelophlebia (Ephemeroptera). Proc. R. Soc. Lond. 200B: 137–150.

    Google Scholar 

  • Hubbard, R. & St. George, R.C.C. (1958) The rhodopsin system of the squid. J. Gen. Physiol. 41: 501–528.

    Google Scholar 

  • Hubbard, R. & St. George, R.C.C. (1958) The rhodopsin system of the squid. J. Gen. Physiol. 41: 501–528.

    Google Scholar 

  • Järvilehto, M. (1979) Receptor potentials in invertebrate visual cells. In: Handbook of Sensory Physiology, Vol. VII/6A. Ed. H. Autrum. Berlin, Heidelberg, New York, Springer, p. 315 – 356.

    Google Scholar 

  • Kirschfeld, K. (1979) The function of photostable pigments in fly photoreceptors. Biophys. Struct. Mech. 5: 117–128

    Google Scholar 

  • Kirschfeld, K., Feiler, R. & Minke, B. (1978) The kinetics of formation of metarhodopsin in intact photoreceptors of the fly. Z. Naturforsch. 33c: 1009 – 1010.

    Google Scholar 

  • Kirschfeld, K. & Franceschini, N. (1977) Photostable pigments within the membrane of photoreceptors and their possible role. Biophys. Struct. Mech. 3: 191–194.

    Google Scholar 

  • Kito, Y., Naito, T. & Nashima, K. (1982) Purification of squid and octopus rhodopsin. Meth. Enzymol. 81 (Part H): 167–171.

    Google Scholar 

  • Kito, Y., Naito, T. & Nashima, K. (1982) Purification of squid and octopus rhodopsin. Meth. Enzymol. 81 (Part H): 167 – 171.

    Google Scholar 

  • Kong,K.-L., Fung, Y.M. & Wasserman, G.S. (1980) Filter-mediated colour vision with one visual pigment. Science 207: 783 – 786.

    Google Scholar 

  • Kropf, A., Brown, P.K. & Hubbard, R. (1959) Lumi- and meta-rhodopsins of squid and octopus. Nature (Lond.) 183: 446 – 450.

    Google Scholar 

  • Kruizinga, B., Kamman, R.L. & Stavenga, D.G. (1983) Laser-induced visual pigment conversions in fly photoreceptors measured in vivo. Biophys. Struct. Mech. 9: 299–307.

    Google Scholar 

  • Lall, A.B., Lord, E.T. & Trouth, C.O. (1982) Vision in the firefly Photuris lucrescens (Coleoptera: Lampyridae): spectral sensitivity and selective adaptation in the compound eye. J. Comp. Physiol. 147: 195–200.

    Google Scholar 

  • Lall, A.B., Seliger, H.H., Biggley, W.H. & Lloyd, J.E. (1980) Ecology of colours of firefly bioluminescence. Science 210: 560 – 562.

    Google Scholar 

  • Land, M.F. (1981) Optics and vision in invertebrates. In: Handbook of Sensory Physiology, Vol. VII/6B. Ed. H. Autrum. Berlin, Heidelberg, New York, Springer, p. 471 – 592.

    Google Scholar 

  • Langer, H. (1975) Properties and functions of screening pigments in insect eyes. In: Photoreceptor Optics. Ed. A.W. Snyder & R. Menzel. Berlin, Heidelberg, New York, Springer, p. 429 – 455.

    Google Scholar 

  • Langer, H., Hamann, B. & Meinecke, C.C. (1979) Tetrachromatic visual system in the moth Spodoptera exempta. ( Insecta: Noctuidae). J. Comp. Physiol. 129: 235–239.

    Google Scholar 

  • Langer, H., Schlecht, P. & Schwemer, J. (1982) Microspectrophotometric investigation of insect visual pigments. Meth. Enzymol. 81 (Part H): 729 – 742.

    Google Scholar 

  • Langer, H. & Thorell, B. (1966) Microspectrophotometry of single rhabdomeres in the insect eye. Exp. Cell Res. 41: 673–677.

    Google Scholar 

  • Laughlin, S.B. & McGinness, S. (1978) The structures of dorsal and ventral regions of a dragonfly retina. Cell Tissue Res. 188: 427–447.

    Google Scholar 

  • Leggett, L.M.W. (1979) A retinal substrate for colour discrimination in crabs. J. Comp. Physiol. 133: 159–166.

    Google Scholar 

  • Leggett, L.M.W. & Stavenga, D.G. (1981) Diurnal changes in angular sensitivity of crab photoreceptors. J. Comp. Physiol. 144: 99–109.

    Google Scholar 

  • Lisman, J.E. & Sheline, Y. (1976) Analysis of the rhodopsin cycle in Limulus ventral photoreceptors using the early receptor potential. J. Gen. Physiol. 68: 487–501.

    Google Scholar 

  • Liu, R.S.H. & Matsumoto, H. (1982) Fluorine - labeled retinals and rhodopsins. Meth. Enzymol. 81 (Part H): 694–698

    Google Scholar 

  • Lythgoe, J.N. (1972) The adaptation of visual pigment to their photic environment. In: Handbook of Sensory Physiology, Vol. VII/1 • Ed. H.J.A. Dartna 11. Berlin, Heidelberg, New York, p. 566–624.

    Google Scholar 

  • Lythgoe, J.N. (1979) The Ecology of Vision. Oxford, Clarendon.

    Google Scholar 

  • Mclntyre, P. & Kirschfeld, K. (1981) Absorption properties of a photostable pigment (P456) in rhabdomere 7 of the fly. J. Comp. Physiol. 143: 3–15.

    Google Scholar 

  • Menzel, R. (1979) Spectral sensitivity and colour vision in invertebrates. In: Handbook of Sensory Physiology, Vol. VII/6A. Ed. H. Autrum. Berlin, Heidelberg, New York, Springer, p. 503–580.

    Google Scholar 

  • Messenger, J.B. (1981) Comparative physiology of vision in molluscs. In: Handbook of Sensory Physiology, Vol. VII/6C. Ed. H. Autrum. Berlin, Heidelberg, New York, Springer, p. 93–200.

    Google Scholar 

  • Miller, W.H. (1979) Ocular optical filtering. In: Handbook of Sensory Physiology, Vol. VII/6A. Ed. H. Autrum. Berlin, Heidelberg, New York, Springer, p. 69–143.

    Google Scholar 

  • Miller, W.H. & Bernard, G.D. (1968) Butterfly glow. J. Ultrastruct. Res. 24: 286–294.

    Google Scholar 

  • Minke, B., Hochstein, S. & Hillman, P. (1973) Early receptor potential evidence for the existence of two thermally stable states in the barnacle visual pigment. J. Gen. Physiol. 62: 87–104.

    Google Scholar 

  • Minke, B., Hochstein, S. & Hillman, P. (1974) Derivation of a quantitative kinetic model for a visual pigment from observations of early receptor potential. Biophys. J. 14: 490–512.

    Google Scholar 

  • Minke, B. & Kirschfeld, K. (1978) Microspectrophotometric evidence for two photo-interconvertible states of visual pigment in the barnacle lateral eye. J. Gen. Physiol. 71: 37–45.

    Google Scholar 

  • Minke, B. & Kirschfeld, K. (1979) The contribution of a sensitizing pigment to the photosensitivity spectra of fly rhodopsin and metarhodopsin. J. Gen. Physiol. 73: 517–540.

    Google Scholar 

  • Minke, B. & Kirschfeld, K. (1980) Fast electrical potentials arising from activation of metarhodopsin in the fly. J. Gen. Physiol. 75: 381–402.

    Google Scholar 

  • Morton, R.A. (1972) The chemistry of the visual pigments. In: Handbook of Sensory Physiology, Vol. VII/1. Ed. H.J.A. Dartnall. Berlin, Heidelberg, New York, Springer, p. 33–68.

    Google Scholar 

  • Muri, R.B. (1978) Microspectrophotometry of rhabdomes in the honeybee drone. Neurosci. Lett. Suppl. 1: S410.

    Google Scholar 

  • Muri, R.B. (1979) Microspectrophotometrie visible et UV des rhabdomes isolés de la rétine du faux-bourdon (Apis mellifera). Ph.D. Thesis, University of Geneva.

    Google Scholar 

  • Nässei, D.R. & Waterman, T.H. (1979) Massive diurnally modulated photoreceptor membrane turnover in crab light and dark adaptation. J. Comp. Physiol. 131: 205–216.

    Google Scholar 

  • Naito, T., Nashima-Hayama, K., Ohtsu, K. & Kito, Y. (1981) Photo- reactions of cephalopod rhodopsin. Vision Res. 21: 935 – 941.

    Google Scholar 

  • Nashima, K., Mitsudo, M. & Kito, Y. (1979) Molecular weight and structural studies on cephalopod rhodopsin. Biochim. Biophys. Acta 579: 155–168.

    Google Scholar 

  • Nowikoff, M. (1931) Untersuchungen über die Komplexeaugen von Lepidopteren nebst einigen Bemerkungen über die Rhabdome der Arthropoden im Allgemeinen. Z. Wiss. Zool. 138: 1–67.

    Google Scholar 

  • Nowikoff, M. (1931) Untersuchungen über die Komplexeaugen von Lepidopteren nebst einigen Bemerkungen über die Rhabdome der Arthropoden im Allgemeinen. Z. Wiss. Zool. 138: 1–67.

    Google Scholar 

  • Olivo, R.F. & Chrismer, K.L. (1980) Spectral sensitivity of screening pigment migration in retinula cells of the crayfish Procambarus. Vision Res. 20: 385 – 389.

    Google Scholar 

  • Ostroy, S.E. (1977) Rhodopsin and the visual process. Biochim. Biophys. Acta 463: 91–125.

    Google Scholar 

  • Ostroy, S.E. (1978) The characteristics of Drosophila rhodopsin in wild type and norp A vision transduction mutant. J. Gen. Physiol. 72: 717–732.

    Google Scholar 

  • Ostroy, S.E., Wilson, M. & Pak, W.L. (1974) Drosophila rhodopsin: Photochemistry, extraction and differences in the norp A phototransduction mutant. Biochem. Biophys. Res. Commun. 59: 960–966.

    Google Scholar 

  • Packer, L. (Ed.) (1982) Methods in Enzymology, Vol. 81, Biomembranes, Part H. Visual Pigments and Purple Membranes, I. New York, Academic Press.

    Google Scholar 

  • Pak, W.L. & Lidington, K.J. (1974) Fast electrical potential from a long- lived, long-wavelength photoproduct of fly visual pigment. J. Gen. Physiol. 63: 740–756.

    Google Scholar 

  • Pask, C. & Barr ell, K.F. ( 1980 a) Photoreceptor optics Is Introduction to formalism and excitation in a lens-photoreceptor system. Biol. Cybern. 36: 1–8.

    Google Scholar 

  • Pask, C. & Barrell, K.F. ( 1980 b) Photoreceptor optics lis Application to angular sensitivity and other properties of a lens-photoreceptor system. Biol. Cybern. 36: 9–18.

    Google Scholar 

  • Paulsen, R. & Schwemer, J. (1972) Studies on the insect visual pigment sensitive to ultraviolet light: retinal as the chromophoric group. Biochim. Biophys. Acta 283: 520–529.

    Google Scholar 

  • Paulsen, R. ic Schwemer, J. (1973) Proteins of invertebrate photoreceptor membranes. Characterization of visual-pigment preparations by gel electrophoresis. Eur. J. Biochem. 40: 577–583.

    Google Scholar 

  • Paulsen, R. & Schwemer, J. (1979) Vitamin A deficiency reduces the concentration of visual pigment protein within blowfly photoreceptor membranes. Biochim. Biophys. Acta 557: 385–390.

    Google Scholar 

  • Pepe, I.M. & Cugnoli, C. (1980) Isolation and characterization of a water-soluble photopigment from honeybee compound eye. Vision Res. 20: 97 - 102.

    Google Scholar 

  • Razmjoo, S. & Hamdorf, K. (1976) Visual sensitivity and the variation of total pigment content in the blowfly photoreceptor membrane. J. Comp. Physiol. 105: 279–286.

    Google Scholar 

  • Razmjoo, S. & Hamdorf, K. (1976) Visual sensitivity and the variation of total pigment content in the blowfly photoreceptor membrane. J. Comp. Physiol. 105: 279–286.

    Google Scholar 

  • Schlecht, P., Hamdorf, K. & Langer, H. (1978) The arrangement of colour receptors in a fused rhabdom of an insect. J. Comp. Physiol. 123: 239–243.

    Google Scholar 

  • Schwemer, J. (1979) Molekulare Grundlagen der Photorezeption bei der Schmeissfliege Calliphora erythrocephala Meig. Habilitationsschrift, Bochum.

    Google Scholar 

  • Schwemer, J. (1979) Molekulare Grundlagen der Photorezeption bei der Schmeissfliege Calliphora erythrocephala Meig. Habilitationsschrift, Bochum.

    Google Scholar 

  • Schwemer, J., Gogala, M. & Hamdorf, K. (1971) Der UV-Sehfarbstoff der Insekten: Photochemie in vitro und in vivo. Z. vergl. Physiol. 75: 174–188.

    Google Scholar 

  • Schwemer, J. & Langer, H. (1982) Insect visual pigments. Meth. Enzymol. 81 (Part H): 182 – 190.

    Google Scholar 

  • Schwemer, J. & Paulsen, R. (1973) Three visual pigments in Deilephila elpenor ( Lepidoptera, Sphingidae). J. Comp. Physiol. 86: 215–229.

    Google Scholar 

  • Shichida, Y., Kobayashi, T., Ohtani, H., Yoshizawa, T. & Nagakura, S. (1978) Picosecond laser photolysis of squid rhodopsin at room and low temperatures. Photochem. Photobiol. 27: 335–341.

    Google Scholar 

  • Shriver, J.W., Mateescu, G.D. & Abrahamson, E.W. (1982) C NMR spectroscopy of the chromophore of rhodopsin. Meth. Enzymol. 81 (PartH): 698 – 703.

    Google Scholar 

  • Snyder, A.W., Menzel, R. & Laughlin, S.B. (1973) Structure and function of the fused rhabdom. J. Comp. Physiol. 87: 99–135.

    Google Scholar 

  • Snyder, A.W. & Miller, W.H. (1972) Fly colour vision. Vision Res. 12: 1389 – 1396.

    Google Scholar 

  • Snyder, A.W. & Pask, C. (1973) Spectral sensitivity of dipteran retinula cells. J. Comp. Physiol. 84: 59–76.

    Google Scholar 

  • Stark, W.S., Ivanyshyn, A.M. & Greenberg, R.M. (1977) Sensitivity and photopigments of Rl-6, a two-peaked photoreceptor, in Drosophila, Calliphora and Musca. J. Comp. Physiol. 121: 289–305.

    Google Scholar 

  • Stark, W.S. & Johnson, M.A. (1980) Microspectrophotometry of Drosophila visual pigments: determinations of conversion efficiency in Rl-6 receptors. J. Comp. Physiol. 140: 275–286.

    Google Scholar 

  • Stavenga, D.G. (1975) Derivation of photochrome absorption spectra from absorbance difference measurements. Photochem. Photobiol. 21: 105–110.

    Google Scholar 

  • Stavenga, D.G. (1975) Derivation of photochrome absorption spectra from absorbance difference measurements. Photochem. Photobiol. 21: 105–110.

    Google Scholar 

  • Stavenga, D.G. (1976) Fly visual pigments. Difference in visual pigments of blowfly and dronefly peripheral retinula cells. 3. Comp. Physiol. Ill: 137 – 152.

    Google Scholar 

  • Stavenga, D.G. (1979) Pseudopupils of compound eyes. In: Handbook of Sensory Physiology, Vol. VII/6A. Ed. H. Autrum. Berlin, Heidelberg, New York, Springer, p. 357 – 439.

    Google Scholar 

  • Stavenga, D.G. (1980) Short wavelength light in invertebrate visual sense cells - Pigments, potentials and problems. In: The Blue Light Syndrome. Ed. H. Senger. Berlin, Heidelberg, New York, Springer, p. 5 – 24.

    Google Scholar 

  • Stavenga, D.G. & Barneveld, H.H. van. (1975) On dispersion in visual photoreceptors. Vision Res. 15: 1091 – 1095.

    Google Scholar 

  • Stavenga, D.G. & Franceschini, N. (1981) Fly visual pigment states, rhodopsin R490, metarhodopsins M and Mf, studied by transmission and fluorescence microspectrophotometry in vivo. Invest. Ophth. Vis. Sei. ( Suppl. ) 20: 111.

    Google Scholar 

  • Stavenga, D.G., Franceschini, N. & Kirschfeld, K. (1983) Fluorescence of visual pigments studied in the eye of intact flies. (Submitted).

    Google Scholar 

  • Stavenga, D.G., Numan, J.A.J., Tinbergen, J. & Kuiper, J.W. (1977) Insect pupil mechanisms. II. Pigment migration in retinula cells of butterflies. J. Comp. Physiol. 113: 73–93.

    Google Scholar 

  • Stavenga, D.G., Zantema, A. & Kuiper, 3.W. (1973) Rhodopsin processes and the function of the pupil mechanism in flies. In: Biochemistry and Physiology of Visual Pigments. Ed. H. Langer. Berlin, Heidelberg, New York, Springer, p. 175 – 180.

    Google Scholar 

  • Stein,P.J., Brammer, J.D. & Ostroy, S.E. (1978) Renewal of opsin in the photoreceptor cells of the mosquito. J. Gen. Physiol. 74: 565–582.

    Google Scholar 

  • Stephenson, R.S. & Pak, W.L. (1980) Heterogenic components of a fast electrical potential in Drosophila compound eye and their relation to visual pigment photoconversion. J. Gen. Physiol. 75: 353–379.

    Google Scholar 

  • Suzuki, T., Sugahara, M. & Kito, Y. (1972) An intermediate in the photoregeneration of squid rhodopsin. Biochim. Biophys. Acta 275: 260–270.

    Google Scholar 

  • Suzuki, T., Sugahara, M. & Kito, Y. (1972) An intermediate in the photoregeneration of squid rhodopsin. Biochim. Biophys. Acta 275: 260–270.

    Google Scholar 

  • Suzuki, T., Uji, K. & Kito, Y. (1976) Studies on cephalopod rhodopsin: photoisomerization of the chromophore. Biochim. Biophys. Acta 428: 321–338.

    Google Scholar 

  • Takeuchi, J. (1966) Photosensitive pigments in the cephalopod retina. J. Nara Med. Assoc. 17: 433 – 448.

    Google Scholar 

  • Tokunaga, F., Shichida, Y. & Yoshizawa, T. (1975) A new intermediate between lumirhodopsin and metarhodopsin in squid. FEBS Lett. 55: 229 – 232.

    Google Scholar 

  • Tsukahara, Y. & Horridge, G.A. (1977) Visual pigment spectra from sensitivity measurements after chromatic adaptation of single fly retinula cells. J. Comp. Physiol. 114: 233–251.

    Google Scholar 

  • Tsukahara, Y., Horridge, G.A. & Stavenga, D.G. (1977) Afterpotentials in dronefly retinula cells. J. Comp. Physiol. 114: 253–266.

    Google Scholar 

  • Vogt, K. (1980) Die Spiegeloptik des Flusskrebsauge. J. Comp. Physiol. 135: 1–19.

    Google Scholar 

  • Vogt, K., Kirschfeld, K. & Stavenga, D.G. (1982) Spectral effects of the pupil in fly photoreceptors. J. Comp. Physiol. 146: 145–152.

    Google Scholar 

  • Vries,H. de & Kuiper J.W. (1958) Optics of the insect eye. Ann. N. Y. Acad. Sei. 74: 196 – 203.

    Google Scholar 

  • Wald, G. & Hubbard, R. (1957) Visual pigment of a decapod crustacean: the lobster. Nature (Lond.) 180: 278 – 280.

    Google Scholar 

  • Waterman, T.H. (1982) Fine structure and turnover of photoreceptor membranes. In: Visual Cells in Evolution. Ed. J.A. Westfall. New York, Raven Press, p. 23 – 41.

    Google Scholar 

  • White, R.H. (1968) The effect of light and light deprivation upon the ultrastructure of the larval mosquito eye. III. Multivesicular bodies and protein uptake. J. Exp. Zool. 169: 261–278.

    Google Scholar 

  • White, R.H., Gifford, D. & Michaud, N.A. (1980) Turnover of photoreceptor membrane in the larval mosquite ocellus: rhabdomeric coated vesicles and organelles of the vacuolar system. In: The Effects of Constant Light on Visual Processes. Ed. T.P. Williams and B.N. Baker. New York, Plenum, p. 271 – 296.

    Google Scholar 

  • White, R.H. & Sundeen, C.D. (1967) The effect of light and dark deprivation upon the ultrastructure of the larval mosquito eye. I. Polyribosomes and endoplasmatic reticulum. J. Exp. Zool. 164: 461– 478.

    Google Scholar 

  • Yoshizawa, T. & Shichida, Y. (1982a) Low-temperature spectrophotometry of intermediates of rhodopsin. Meth. Enzymol. 81 (Part H): 333–353

    Google Scholar 

  • Yoshizawa, T. & Shichida, Y. (1982 b) Low-temperature circular dichroism of intermediates of rhodopsin. Meth. Enzymol. 81 (Part H): 634–642.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Stavenga, D.G., Schwemer, J. (1984). Visual Pigments of Invertebrates. In: Ali, M.A. (eds) Photoreception and Vision in Invertebrates. NATO ASI Series, vol 74. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2743-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2743-1_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9699-7

  • Online ISBN: 978-1-4613-2743-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics