Skip to main content

Morphologie et Developpement des Yeux Simples et Composes des Insectes

  • Chapter
Photoreception and Vision in Invertebrates

Part of the book series: NATO ASI Series ((NSSA,volume 74))

Abstract

Compound eyes macroscopically show a certain polymorphism related to the biology, the sex or the degree of evolution of the insect.

These eyes indeed correspond to a juxtaposition of a generally very high number of functional units, the ommatidia, which shows a general structure, alike in all insects, at three levels: dioptric (cornea, crystalline lens), pigmentary (primary and secondary pigmentary cells) and photosensitive (retinal cells constituting a rhabdom) levels. Modifications of structure are registered at each level, depending on the biology (diurnal or nocturnal), the adaptation of the eye to light, or the phylogenic place of the considered insect.

Compound eyes are either present in the young larva at the time of hatching (Heterometabolous) or exist, under a functional and definitive form, only in the imago (Holometabolous). While some eye growth in Heterometabolous is accomplished by an increase in the size of its elements, most growth is due to an addition of new ommatida which continually differentiate at the level of the growth zone, a permanent, well localized structure, of a similar form in the different groups. During each larval stage, new rows of ommatidia are formed at this level and intercalate, at the next moult, between the differentiated ommatidia and the growth zone. The number of ommatidia formed during larval life varies greatly according to the species. Moreover, throughout larval development, the previously formed ommatidia increase in size: cells increase in volume, facets increase in diameter, and at the level of the differentiated and functional ommatidia, some mitose will increase the number of accessory pigment cells.

In Holometabolous, larvae are either blind or have rudimentary eyes (stemmata). The differentiation of future compound eyes can begin either at the beginning of larval life or, in contrast, at the time of metamorphosis, the stemmata generally degenerating at the end of larval life. Cellular proliferation and differentiation which give birth to the cells of the future ommatidia take place in several areas spatially separated through the presumptive eye. There exists no growth zone as specialized as in Heterometabolous. The processes of growth are nevertheless comparable, the only difference being a different chronology: in Heterometabolous, the bases of multiplication and differentiation which take place all through larval life, are very close in time and space, whereas in Holometabolous these two phases are relatively separated.

The growth zone, long considered as the level where the cephalic epidermis is transformed into an eye, would rather correspond to a localized area of stem cells which persists throughout the duration of eye development. The daughter cells constantly formed at the level of the growth zone progressively cluster, each cluster leading to the formation of an ommatidia. The differentiation of each of these components results from its position in the ommatidial bundle and perhaps also from its origin from certain hypothetical stem cells. Finally, the development of compound eyes is autonomous, independent of the presence of the optic lobe.

In addition to compound eyes, “simple” eyes also exist in insects: for example the stemmata in Holometabolous larvae, where they really play a visual role; and of the ocelli found in adult insects of numerous groups and whose function is yet not well known.

The searcher’s eye, Not seldom finds more than he wished to find. Gotthold Ephraim Lessing, Nathan der Weise, 1779.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, H. (1978a) Postembryonic development of the visual system of the locust Schistocerca gregaria. I. Patterns of growth and interactions in the retina and optic lobe. J. Embryol. Exp. Morph. 45: 55–83.

    Google Scholar 

  • Anderson, H. ( 1978 b) Postembryonic development of the visual system of the locust Schistocerca gregaria. II. An experimental investigation of the formation of the retina-lamina projection. J. Embryol. Exp. Morph. 46: 147–170.

    Google Scholar 

  • Ando, H. (1962) The comparative embryology of Odonata, with special reference to a relic dragonfly Epiophlebia superstes Selys. Jap. Soc. for the Promotion of Sciences, 205 - 247.

    Google Scholar 

  • Autrum, H. (1975) Les yeux et la vision des Insectes. In: Traité de Zoologie, Paris, Masson, VIII, 3: 742–853.

    Google Scholar 

  • Barra, J.A. (1969) Les photorécepteurs des Collemboles. Nouvelles formations à structure rhabdomérique propres au genre Tomocerus (Insecte Collembole). C.R. Acad. Sci., Fr. 268: 2088–2090.

    Google Scholar 

  • Benzer, S. (1973) Genetic dissection of behavior. Sci. Am. 229: 24–37.

    Google Scholar 

  • Bernard, F. (1937) Recherche sur la morphogenèse des yeux composés d’Arthropodes (Développement, Croissance, Réduction). Bull. Biol. Fr. Belg. 23: 1–162.

    Google Scholar 

  • Bernhard, C.G., Gemme, G. & Sâllstrom, J. (1970) Comparative ultrastructure of corneal surface topography in insects with aspects on phylogenesis and function. Z. vergl. Physiol. 67: 1–25.

    Google Scholar 

  • Bodenstein, D. (1940) Growth regulation of transplanted eye and leg discs Drosophila. J. Exp. Zool. 84: 23–37.

    Google Scholar 

  • Bodenstein, D. (1943) A study of the relationship between organ and organic environment in the postembryonic development of the yellow fever mosquito. Conn. Agr. Sta. Bull. 501: 100–114.

    Google Scholar 

  • Bodenstein, D. (1953) Postembryonic development. In: Insect Physiology. Ed. K.D. Roeder, New York, Wiley, p. 822–865. Brammer, J.D. (1970) The ultrastructure of the compound eye of a mosquito Aedes aegypti L. J. Exp. Zool. 175: 181–196.

    Google Scholar 

  • Brammer, J.D. & Clarin, B. (1976) Changes in volume of the rhabdom in the compound eye of Aedes aegypti L. J. Exp. Zool. 195: 33–40.

    Google Scholar 

  • Burghause, F. (1976) Adaptationserscheinungen in den Komplexaugen von Gyrinus natator L. ( Coleoptera: Gyrinidae). Int. J. Insect Morphol. Embryol. 5: 335–348.

    Google Scholar 

  • Burton, P.R., Stockhammer, K.A. (1969) Electron microscopic studies of the compound eye of the Toadbug Gelastocoris oculatus. J. Morph. 127: 233–258.

    Google Scholar 

  • Campos-Ortega, J.A. & Gateff, E.A. (1976) The development of ommatidial patterning in metamorphosed eye imaginal discs implants of Drosophila melanogaster. Wilhelm Roux Archiv. Entw. Mech. Org. 179: 373–392.

    Google Scholar 

  • Campos-Ortega, J.A., Hofbauer, A. (1977) Cell clones and pattern formation: on the lineage of photoreceptor cells in the compound eye of Drosophila. Wilhelm Rouw Archiv. Entw. Mech. Org. 181: 227–245.

    Google Scholar 

  • Checchi, A.C. (1969) A Quantitative Analysis of the Compound Eye Development in the Mosquito Aedes aegypti L. Thesis, Purdue University. 85 pages.

    Google Scholar 

  • Chevais, S. (1937) Sur la structure des yeux implantes de Drosophila melanogaster. Arch. Anat. Micros. 33: 107–112.

    Google Scholar 

  • Cooter, R.J. (1975) Ocellus and ocellarnerves of Periplaneta americana ( Orthoptera: Dictyoptera). Int. J. Insect Morphol. Embryol. 4: 273–288.

    Google Scholar 

  • Cosens, F. (1976) The effect of short wavelength light on retinula cell structure in white-eye Drosophila. J. Insect. Physiol. 22: 497–504.

    Google Scholar 

  • Demoll, R. (1909) Uber eine lichtzersetzliche substanz im Facettenauge sowie eine Pigmentwanderung im Appositionsauge. Arch. ges. Physiol. 129: 461–475.

    Google Scholar 

  • Drescher, W. (1960) Regenerationsversuche am Gehirn von Periplaneta americana. Z. Morph. Oekol. Tiere 48: 576–649.

    Google Scholar 

  • Eakin, R.M. (1968) Evolution of photoreceptors. Evol. Biol. 2: 194–242.

    Google Scholar 

  • Edwards, J.S. (1969) Postembryonic development and regeneration of the insect nervous system. Adv. Insect Physiol. 6: 98–137.

    Google Scholar 

  • Egelhaaf, A., Berndt, P. & Küthe, H.W. (1975) Mitosenverteilung und H - thymidin-Eibau in der proliferierenden Augenanlage von Ephestia kuehniella Zeller. Wilhelm Roux. Arch. Entw. Mech. Org. 178: 185–202

    Google Scholar 

  • Eley, S. & Shelton, P.M.J. (1976) Cell junctions in the developing Compound eye of the desert locust Schistocerca gregaria J. Embryol. Exp. Morph. 36: 409–423.

    Google Scholar 

  • Ephrussi, B.,Beadle, G.B. (1937) Revue des experiences de transplantation. Bull. Biol. Fr. Belg. 71: 54–74.

    Google Scholar 

  • Fristrom, D. (1969) Cellular degeneration in the production of some mutant phenotypes in Drosophila melanogaster ( Diptera, Droso-philidae). Mol. Gen. Genet. 103: 363–379.

    Google Scholar 

  • Friza, F. (1928) Zur Frage der Färbung und Zeichnung des facettierten Insektenauges. Z. vergl. Physiol. 8: 289–336.

    Google Scholar 

  • Fyg, W. (1961) Uber die Kristallkegel in den Komplexaugen der Honigbiene (Apis mellifica L.). Mitt. Schweiz, ent. Ges. 33: 185–194.

    Google Scholar 

  • Garcia-Bellido, A. (1972) Pattern formation in imaginal disks. In: The Biology of Imaginal Disks. Ed. H. Urspung & R. Nüthinger. Berlin, Springer Verlag, p. 59 – 91.

    Google Scholar 

  • Goodman, L.J. (1970) The structure and function of the insect dorsal ocellus. Adv. Insect Physiol. 7: 97–195.

    Google Scholar 

  • Goodman, L.J. (1974) The neural organization and physiology of the insect dorsal ocellus. In: The Compound Eye and Vision of Insects. Ed. G.A. Horridge. Oxford, Oxford University Press, p. 515 – 548.

    Google Scholar 

  • Green, S.M., Lawrence, P.A. (1975) Recruitement of epidermal cells by the developing eye of Oncopeltus (Hemiptera). Wilhelm Roux Archiv. Entw. Mech. Org. 177: 61–65.

    Google Scholar 

  • Grenacher, H. (1879) Untersuchungen liber das Sehorgan der Arthropoden. Gttttingen Vanderhoeck et Ruprecht, p. 645–656.

    Google Scholar 

  • Heming, B.S. (1982) Structure and development of the larval visual system in embryos of Lytta viridana Leconte ( Coleoptera, Meloidae). J. Morphol. 172: 23–43.

    Google Scholar 

  • Hofbauer, A., Campos-Ortega, J.A. (1976) Cell clone and pattern formation. Genetic eye mosaics in Drosophila melanogaster. Wilhelm Roux Archiv. Entw. Mech. Org. 179: 275–289.

    Google Scholar 

  • Home, E.M. (1972) Centrioles and associated structures in the retinula cells of insect eyes. Tissue Cell 4: 227–234.

    Google Scholar 

  • Home, E.M. (1975) Ultrastructural studies of development and light-dark adaptation of the eye of Coccinella septempunctata L., with particular reference to ciliary structures. Tissue Cell 7: 703 – 722.

    Google Scholar 

  • Home, E.M. (1976) The fine structure of some carabid beetles eyes with particular reference to ciliary structures in the retinula cells. Tissue Cell 8: 311 – 324.

    Google Scholar 

  • Horridge, G.A. (1966) The retina of the locust. In: Functional Organization of the Compound Eye. Ed. C.G. Bernhard. Oxford, Pergamon Press. Wenner Gren Center Internat. Symp. Series 7: 513 – 541.

    Google Scholar 

  • Horridge, G.A. (1968) Pigment movement and the crystalline threads of the firefly eye. Nature (Lond.) 218: 778 – 779.

    Google Scholar 

  • Hyde, C.A.T. (1972) Regeneration, post-embryonic induction and cellular interaction in the eye of Periplaneta americana. J. Embryol. Exp. Morph. 27: 367–379.

    Google Scholar 

  • Illmensee, K. (1970) Imaginal structures after nuclear transplantation in Drosophila melanogaster. Naturwissenschaften lis 550–551.

    Google Scholar 

  • Juberthie, C., Munoz-Cuevas, A. (1973) Presence de centrióle dans la cellule visuelle de I’embryon d’ Ischyropsalis luteipes (Arachnides: Opilions). C.R. Acad. Sci. Paris 276: 2537–2539.

    Google Scholar 

  • Kim, C.W. (1964) Formation and histochemical analysis of the crystalline cone of compound eye in Pieris rapae L. (Lepidoptera). Korean J. Zool. 7: 89–94.

    Google Scholar 

  • Kobakhidze, D.N., Sicharylidze, T.A. & Svanidze, I.K. (1959) The effects of ecological conditions on the structure of the visual apparatus in orthopterans. Soobsh. AN Gruz. Z.Z.Z.E. 22: 569–579.

    Google Scholar 

  • Kopec, S. (1922) Mutual relationship in the development of the brain and eyes of Lepidoptera. J. Exp. Zool. 36: 459–465.

    Google Scholar 

  • Kuroda, Y. (1970) Differentiation of ommatidium-forming cells of Drosophila melanogaster in organ culture. Exp. Cell Res. 59: 429–439.

    Google Scholar 

  • Laughlin, S. & McGinness, S. (1978) The structures of dorsal and ventral regions of a Dragonfly retina. Cell Tissue Res. 188: 427–447.

    Google Scholar 

  • Lawrence, P.A. & Shelton, P.M.J. (1975) The determination of polarity in the developing insect retina. J. Embryol. Exp. Morph. 33: 471–486.

    Google Scholar 

  • Lew, G.T.W. (1934) Head characters of the Odonata with special reference to the development of the compound eye. Entomol. Americana 14: 41–73.

    Google Scholar 

  • Lüdtke, H. (1940) Die embryonale und postembryonale Entwicklung des Agues bei Notonecta glauca ( Hemiptera: Heteroptera). Zeitsch. Morph. Oekol. Tiere 37: 1–37.

    Google Scholar 

  • Malzacher, P. (1968) Die Embryogenese des Gehirns paurometaboler Insekten. Untersuchungen an Carausius morosus und Periplaneta americana. Z. Morph. Tiere 62: 103–161.

    Google Scholar 

  • Marullo, C. & Mouze, M. (1983) Etude du développement de l’appareil visuel chez les Odonates Zygoptères. (en préparation).

    Google Scholar 

  • Meinertzhagen, I.A. (1973) Development of neuronal connection patterns in the visual systems of insects. In: Developmental Neurobiology of Arthropods. Ed. D. Young. London, New York, Cambridge University Press, p. 51–104.

    Google Scholar 

  • Meinertzhagen, I.A. (1975) The development of neuronal connection patterns in the visual systems of insects. In: Cell Patterning, Ciba Foundation Symposium. Amsterdam, Oxford, New York, Elsevier, 29: 265 – 288.

    Google Scholar 

  • Melnichenko, A.N. (1963) Geographic variability of the honeybee eye. Entomol. Obzr. 42: 118–126.

    Google Scholar 

  • Meyer-Rochow, V.B. (1974) Structure and function of the larval eye of the Sawfly, Perga (Hymenoptera). J. Insect Physiol. 20: 1565–1591.

    Google Scholar 

  • Miller, W.H., Bernard, G.D., Allen, J.L. (1968) The optics of insect compound eyes. Science 162: 760 – 767.

    Google Scholar 

  • Mobbs, P.G. (1976) Development of the locust ocellus. Nature (Lond.) 264: 269 – 271.

    Google Scholar 

  • Mobbs, P.G. (1979) Development of the dorsal ocelli of the desert locust, Schistocerca gregaria Forsk ( Orthoptera: Acrididae). Int. J. Insect Morphol. Embryol. 8: 237–255.

    Google Scholar 

  • Mouze, M. (1971) Rôle de l’hormone juvénile dans la métamorphose oculaire de larves d’Aeshna cyanea Müll. (Insecte Odonate). C. R Acad. Sei. Paris 273: 2316–2319.

    Google Scholar 

  • Mouze, M. (1974) Interactions de l’oeil et du lobe optique au cours de la croissance post-embryonnaire des Insectes Odonates. J. Embryol. Exp. Morphol. 31: 377–407.

    Google Scholar 

  • Mouze, M. (1975) Croissance et régénération de l’oeil de la larve d’ Aeshna cyanea Müll. ( Odonate, Anisoptère). Wilhelm Roux Arch. Entw. Mech. Org. 176: 267–283.

    Google Scholar 

  • Mouze, M. (1978) Contribution à l’Étude du Développement Post- Embryonnaire de l’Appareil Visuel des Odonates Anisoptères (Insectes). Thèse Doctorat Etat, Lille. 130 pages.

    Google Scholar 

  • Mouze, M. (1979) Etude cytologique de la genèse ommatidienne chez la larve d’un Odonate Anisoptère. Rev. Can. Biol. 38: 227–248.

    Google Scholar 

  • Mouze, M., Schaller, F. (1971) Métamorphose oculaire de larves d’ Aeshna cyanea Müll. (Insecte, Odonate) privées d’ecdysone. C.R. Acad. Sei. Paris 273: 2122–2125.

    Google Scholar 

  • Munoz-Cuevas, A. (1975) Aspects ultrastructuraux de la différenciation et de l’organisation de la rétine chez les Opilions (Arachnida). Proc. 6th Int. Arachn. Congr. 1974: 129–132.

    Google Scholar 

  • Nardi, J.B. (1977) The construction of the Insect compound eye: the involvement of cell displacement and cell surface properties in the positioning of cells. Dev. Biol. 61: 287–298.

    Google Scholar 

  • Nowel, M.S. (1981) Postembryonic growth of the compound eye of the cockroach. J. Embryol. Exp. Morph. 62: 259–275.

    Google Scholar 

  • Nowel, M. & Shelton, P.M.J. (1980) The eye margin and compound eye development in the cockroach: evidence against recruitement. J. Embryol. Exp. Morph. 60: 329–343.

    Google Scholar 

  • Nüesch, H. (1968) The role of the nervous system in insect morphogenesis and regeneration. Ann. Ree. Entomol. 13: 27–44.

    Google Scholar 

  • Odselius, R., Elofsson, R. (1981) The basement membrane of the Insect and Crustacean compound eye: Definition, fine structure, and comparative morphology. Cell Tissue Res. 216: 205–214.

    Google Scholar 

  • Perrelet, A., Baumann, F. (1969 a) Presence of small retinula cell in the ommatidium of the honeybee drone eye. J. Microsc. 8: 497–502.

    Google Scholar 

  • Perrelet, A., Baumann, F. (1969 b) Evidence for extracellular space in the rhabdome of the honeybee drone eye. J. Cell Biol. 40: 825–830.

    Google Scholar 

  • Pflugfelder, O. (1936) Vergleichend anatomische, experimentelle und entwicklungs-Geschichtliche Untersuchungen über das Nervensystem und die Sinneorgane der Rhynchoten. Z. Wiss. Zool. 93.

    Google Scholar 

  • Pflugfelder, O. (1937) Die Entwicklung der optischen Ganglien von Culex pipiens. Zoologischer Anzeiger 117: 31 – 36.

    Google Scholar 

  • Pflugfelder, O. (1947) Die Entwicklung embryonaler Teile von Dixippus morosus in der Kopfkapsel von Larven und Imagines. Biol. Zbl. 66: 372–387.

    Google Scholar 

  • Pflugfelder, O. (1958) Entwicklungsphysiologie der Insekten. Akad. Verlagsgesellschaft Leipzig. Geest Portig K.G. 1 – 490.

    Google Scholar 

  • Plagge, E. (1936) Transplantation von Augenimaginalscheiben Swischen der der schwarz und rotäugigen Rasse von Ephestia kühniella. Z. Biol. Zb. 56: 406–409.

    Google Scholar 

  • Ready, D.F., Hanson, F.E., Benzer, S. (1976) The development of the Drosophila retina, a neurocristalline lattice. Develop. Biol. 53: 217–240.

    Google Scholar 

  • Ribi, W.A. (1978) Ultrastructure and migration of screening pigments in the retina of Pieris rapae L. ( Lepidoptera Pieridae ). Cell Tissue Res. 191: 57–73.

    Google Scholar 

  • Richard, G. & Gaudin, G. (1959) La morphologie du développement du S.N. chez divers Insectes. Cas plus particulier des centres et des voies optiques. Acta Symposium de Evolutione insectorium Praha, p. 82 – 88.

    Google Scholar 

  • Ruck,Ph. & Edwards, G.A. (1964) Structure of the Insect dorsal ocellus. I: General organization of the ocellus in Dragonflies. J. Morph. 115: 1–26.

    Google Scholar 

  • Schaller, F. (1960) Etude du développement post-embryonnaire d! Aeshna cyanea. MBU. Ann. Sei. Nat. Zool. 12: 755–868

    Google Scholar 

  • Schaller, F. (1964) Croissance oculaire au cours des développements normaux et perturbés de la larve df Aeshna cyanea MULL. (Insecte Odonate). Ann. Endoer. Paris 25: 122–127.

    Google Scholar 

  • Schoeller, J. (1964) Recherches descriptives et expérimentales sur la céphalogenèse de Calliphora erythrocephala au cours des dévelopements embryonnaires et post-embryonnaires. Arch. Zool. Exp. Gen. 103: 216.

    Google Scholar 

  • Schräder, K. (1938) Untersuchungen liber die Normalentwicklung des Gehirns und Gehirntransplantationen bei der Mehlmotte Ephestia kühniella nebst einigen Bemerkungen über das Corpus allatum. Biol. Zbl. 58: 51–90.

    Google Scholar 

  • Seidel, F. (1935) Der Anlagenplan im Libellenei. Wilhelm Roux Arch. Entw. Mech. Org. 132: 671–751.

    Google Scholar 

  • Seitz, G. (1968) Der Strahlengang im Appositiongauge von Calliphora erythrocephala (Meig.). Z. vergl. Physiol. 59: 205–231.

    Google Scholar 

  • Shelton, P.M.J. (1976) The development of the insect compound eye. In: Insect Development. Ed. P.A. Lawrence. Oxford, Blackwell, p. 152–169.

    Google Scholar 

  • Shelton, P.M.J., Anderson, H.J. & Eley, Z. (1977) Cell lineage and cell determination in the developing compound eye of the cockroach Periplaneta americana. J. Embryol. Exp. Morph. 39: 235–252.

    Google Scholar 

  • Shelton, P.M.J., Lawrence, P.A. (1974) Structure and development of ommatidia in Oncopeltus fasciatus J. Embryol. Exp. Morph. 32: 337–353.

    Google Scholar 

  • Sherk, T.E. (1977) Development of the compound eyes of dragonflies (Odonata). I. Larval compound eyes. J. Exp. Zool. 201: 391–416.

    Google Scholar 

  • Sherk, T.E. (1978a) Development of the compound eyes of dragonflies (Odonata). II. Development of the larval compound eyes. J. Exp. Zool. 203: 47–60.

    Google Scholar 

  • Sherk, T.E. (1978b) Development of the compound eyes of dragonflies (Odonata). III. Adult compound eyes. J. Exp. Zool. 203: 61–80.

    Google Scholar 

  • Sherk, T.E. ( 1978c) Development of the compound eyes of dragonflies (Odonata). IV. Development of the adult compound eyes. J. Exp. Zool. 203: 183–200.

    Google Scholar 

  • Slifer, E.H. (1960) An abnormal grasshopper with two mediam ocelli ( Orthoptera: Acrididae). Ann. Entomol. Soc. Am. 53: 441–443.

    Google Scholar 

  • Spreij, T.E. (1971) Cell death during the development of the imaginai disks of Calliphora erythrocephala. Netherlands J. Zool. 21: 221 – 264.

    Google Scholar 

  • Stark, R.J., Mote, M.I. (1982) Postembryonic development of the visual system of Periplaneta americana. I. Patterns of growth and differentiation. J. Embryol. Exp. Morph. 66: 235–255.

    Google Scholar 

  • Steinberg, A. (1941) A reconsideration of the mode of development of the bar eye of Drosophila melanogaster. Genetics 26: 325 – 346.

    Google Scholar 

  • Such, J. (1969) Contribution a lfetude histochimique et infrastructurale du “cristallin” dans l’ommatidie du phasme Carausius morosus Br. C. R. Acad. Sei., Paris 268: 948–949.

    Google Scholar 

  • Such, J. (1975) Recherches Descriptives et Expérimentales sur la Morphogenèse Embryonnaire de l’Oeil Composé du Phasme Carausius morosus Br. Thèse de Doctorat (Etat), Université de Bordeaux, p. 1–127.

    Google Scholar 

  • Such, J. (1978) Embryologie ultrastructurale de l’ommatidie chez le phasme Carausius morosus Br. (Phasmida: Lonchodidae): morphogenèse et cytodifférenciation. Int. J. Insect Morphol. Embryol. 7: 165–173.

    Google Scholar 

  • Toh, Y., Kuwabara, M. (1974) The fine structure of the dorsal ocellus of the worker honeybee. J. Morphol. 143: 285–306.3

    Google Scholar 

  • Toh, Y., Sagara, H. (1982) Ocellar system of the Swallowtail butterfly larva. I. Structure of the lateral ocelli. J. Ultrastruct. Res. 78: 107-119.

    Google Scholar 

  • Trujillo-Cenoz, O. & Melamed, J. (1978) Development of photoreceptor patterns in the compound eyes of muscoid flies. J. Ultrastruct. Res. 64: 46–62.

    Google Scholar 

  • Viallanes, H. (1891) Sur quelques points de l’histoire du développement embryonnaire de la mante religieuse. Ann. Sei. Nat., 7ème Sér. 11: 282 – 328.

    Google Scholar 

  • Volkonsky, M. (1938) Sur la formation des stries oculaires chez les Acridiens. C. R Soc. Biol. 129: 154–157.

    Google Scholar 

  • Wachmann, E. (1965) Untersuchungen zur Entwicklungsphysiologie des Komplexauges der Wachsmotte Galleria mellonella. Wilhelm Roux Arch. Entw. Mech. Org. 156: 145–183.

    Google Scholar 

  • Waddington, C.H. (1962) Specificity of ultrastructure and its genetic control. J. Cell Comp. Physiol. 60: 93–103.

    Google Scholar 

  • Waddington, C.H., Perry, M.M. (1960) The ultrastructure of the developing eye of Drosophila. Proc. R. Soc. 153B: 155–178.

    Google Scholar 

  • Walcott, B. (1969) Movement of retinular cells in insect eyes on light adaptation. Nature (Lond.) 223: 971–972.

    Google Scholar 

  • White, R.H. (1961) Analysis of the development of the compound eye in the mosquito Aedes aegypti. J. Exp. Zool. 148: 223–240.

    Google Scholar 

  • White, R.H. (1963) Evidence for the existence of a differentiation center in the developing eye of the mosquito. J. Exp. Zool. 152: 139–148.

    Google Scholar 

  • White, R.H. (1967) The effect of light and light deprivation upon the ultrastructure of the larval mosquito eye. II. The rhabdom. J. Exp. Zool. 166: 405–425.

    Google Scholar 

  • White, R.H., Lord, E. (1975) Diminution and enlargement of the mosquito rhabdom in light and darkness. J. Gen. Physiol. 65: 583–598

    Google Scholar 

  • Wigglesworth, V.B. (1953) The origin of sensory neurones in an insect, Rhodnius prolixus (Hemiptera). Quart. J. Microsc. Sei. 94: 93–112.

    Google Scholar 

  • Wilson, M., Garrard, P., Mc Guiness, S. (1978) The unit structure of the locust compound eye. Cell Tissue Res. 195: 205 – 226.

    Google Scholar 

  • Wolbarsht, M.L., Wagner, H.G., Bodenstein, D. (1966) Origin of electrical responses. In: The Functional Organization of the Compound Eye. Ed. C.G. Bernhard. Oxford, New York, Pergamon Press. Wenner Gren Symp. 7: 207 – 217.

    Google Scholar 

  • Wolsky, A. (1938) Experimentelle Untersuchungen über die Differenzierung der zusammengesetzen Augen des Seidenspinners (Bombyx mori L.). Wilhelm Roux Arch. Entw. Mech. Org. 138: 335–344.

    Google Scholar 

  • Wolsky, A., Huxley, J.S. ( 1936 a) The structure of the non-facetted region in the Bar-eye mutants of Drosophila and its bearing of the analysis of genie action upon Arthropodan eyes. Proc. Zool. Soc. Lond. 2: 485–489.

    Google Scholar 

  • Wolsky, A., Huxley, J.S. ( 1936 b) Zur Frage der Entwicklungsphysiologischen Determination des Arthropodenauges. Biol. Zentralbl. 56: 571–572.

    Google Scholar 

  • Wolsky, A., Wolsky, M. (1971) Phase specific and regional differences in the development of the complex eye of the mulberry silkworm (Bombyx mori L.) after unilateral removal of the optic lobe of the brain in early pupal stages. Am. Zool. lis 679.

    Google Scholar 

  • Woolever, P., Pipa, R.L. (1975) Eye disk differentiation in the wax moth. Induction in vitro. J. Exp. Zool. 191: 359–382.

    Google Scholar 

  • Yagi, N., Koyama, Ni (1963) The Compound Eye of Lepidoptera. Approach from Organic Evolution. Tokyo, Shinkys Press Ltd. 1 – 230.

    Google Scholar 

  • Yamanouti, T. (1933) Waschstumsmessungen an Sphodromantis bioculata Burn. V. Bestimmung der absoluten Zenahmswerte der Facettengrosse und Facettenanzahl Anz. Akad. Wiss (Wien) 70: 7–8.

    Google Scholar 

  • Young, E.C. (1969) Eye growth in Corixidae ( Hemiptera, Heteroptera) Proc. R. Ent. Soc. Lond. 44: 71–78.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Mouze, M. (1984). Morphologie et Developpement des Yeux Simples et Composes des Insectes. In: Ali, M.A. (eds) Photoreception and Vision in Invertebrates. NATO ASI Series, vol 74. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2743-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2743-1_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9699-7

  • Online ISBN: 978-1-4613-2743-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics