Skip to main content

The Lobula-Complex of the Fly: Structure, Function and Significance in Visual Behaviour

  • Chapter
Photoreception and Vision in Invertebrates

Part of the book series: NATO ASI Series ((NSSA,volume 74))

Abstract

The lobula-complex of flies consists of the highest order visual neuropils of the optic lobe, the lobula plate and the lobula. Anatomical and electrophysiological investigations of the lobula plate have revealed that it contains a system of large directionally selective motion sensitive interneurons. The structure, response characteristics and synaptic interactions of these interneurons are described. There is strong evidence that the lobula plate is the main motion computation centre of the optic lobe controlling the optomotor responses of the fly. Additional functions in the visual fixation and tracking behaviour and in the figure-ground discrimination seem likely. The lobula has so far been studied only anatomically but not physiologically. Rather indirect evidence suggests that it computes visual signals initiating escape behaviour. The existence of male specific interneurons in this neuropil indicates that it is additionally involved in the control of chasing behaviour typical of males.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altman, J.S.& Tyrer, N.M. (1977) The locust wing hinge stretch receptors. II. Variation, alternative pathways and “mistakes” in the central arborizations. J. Comp. Neurol. 172: 431–439.

    Google Scholar 

  • Arnett, D.W. (1972) Spatial and temporal integration properties of units in the first optic ganglion of dipterans. J. Neurophysiol. 35: 429–444.

    Google Scholar 

  • Beersma, D.G.M., Stavenga, D.G.& Kuiper, J.W. (1975) Organization of visual axes in the compound eye of the fly Musca domestica L. and behavioural consequences. J. Comp. Physiol. 102: 305–320.

    Google Scholar 

  • Beersma, D.G.M., Stavenga, D.G.& Kuiper, J.W. (1977) Retinal lattice, visual field and binocularities in flies. J. Comp. Physiol. 119: 207–220.

    Google Scholar 

  • Bishop, C.A.& Bishop, L.G. (1981) Vertical motion detectors and their synaptic relations in the third optic lobe of the fly. J. Neurobiol. 12: 281–296.

    Google Scholar 

  • Bishop, L.G. (1969) A search for color encoding in the responses of a class of fly interneurons. Z. vergl. Physiol. 64: 355–371.

    Google Scholar 

  • Bishop, L.G.& Keehn, D.G. (1966) Two types of neurones sensitive to motion in the optic lobe of the fly. Nature (Lond.) 212: 1374–1376.

    Google Scholar 

  • Bishop, L.G., Keehn, D.G.& McCann, G.D. (1968) Motion detection by interneurons of optic lobes and brain of the flies, Calliphora phaenicia and Musca domestica. J. Neurophysiol. 31: 509–525.

    Google Scholar 

  • Blondeau, J. (1977) Electrically evoked motor activity in the fly (Calliphora erythrocephala). Dissertation, Eberhard-Karls-Universität Tübingen.

    Google Scholar 

  • Blondeau, J. (1981) Electrically evoked course control in the fly Calliphora erythrocephala. J. Exp. Biol. 92: 143–153.

    Google Scholar 

  • Blondeau, J.& Heisenberg, M. (1982) The three-dimensional optomotor torque system of Drosophila melanogaster. Studies on wild-type and the mutant optomotor blind H31. J. Comp. Physiol. 145: 321–329.

    Google Scholar 

  • Bloom, J.W.& Atwood, H.L. (1980) Effects of altered sensory experience on the responsiveness of the locust descending contralateral movement detector neuron. J. Comp. Physiol. 135: 191–199.

    Google Scholar 

  • Braitenberg, V. (1967) Patterns of projection in the visual system of the fly. I. Retina-lamina projections. Exp. Brain Res. 3: 271–298.

    Google Scholar 

  • Braitenberg, V. (1970) Ordnung und Orientierung der Elemente im Sehsystem der Fliege. Kybernetik 7: 235–242.

    Google Scholar 

  • Braitenberg, V. (1972) Periodic structures and structural gradients in the visual ganglia of the fly. In: Information Processing in the Visual Systems of Arthropods. Ed. R Wehner. Berlin, Heidelberg, New York, Springer-Verlag, p. 3–15.

    Google Scholar 

  • Braitenberg, V.& Hauser-Holshuch, H. (1972) Patterns of projection in the visual system of the fly. II. Quantitative aspects of second order neurones in relation to models of movement perception. Exp. Brain Res. 16: 184–209.

    Google Scholar 

  • Buchner, E. (1976) Elementary movement detectors in an insect visual system. Biol. Cybern. 24: 85–101.

    Google Scholar 

  • Buchner, E. (1983) Behavioural analysis of spatial vision in insects (This volume).

    Google Scholar 

  • Buchner, E., Götz, K.G.& Straub, C. (1978) Elementary detectors for vertical movement in the visual system of Drosophila. Biol. Cybern. 31: 235–242.

    Google Scholar 

  • Burrows, M. (1973) The morphology of an levator and a depresser motoneuron of the hindwing of a locust. J. Comp. Physiol. 83: 165–178.

    Google Scholar 

  • DeVoe, R.D. (1980) Movement sensitivities of cells in the fly’s medulla. J. Comp. Physiol. 138: 93–119.

    Google Scholar 

  • DeVoe, R.D.& Ockleford, E.M. (1976) Intracellular responses from cells of the medulla of the fly, Calliphora erythrocephala. Biol. Cybern. 23: 13–24.

    Google Scholar 

  • Dvorak, D.R., Bishop, L.G.& Eckert, H.E. (1975) On the identification of movement detectors in the fly optic lobe. J. Comp. Physiol. 100: 5–23.

    Google Scholar 

  • Dvorak, D., Srinivasan, M.V.& French, A.S. (1980) The contrast sensitivity of fly movement-detecting neurons. Vision Res. 20: 397–407.

    Google Scholar 

  • Eckert, H. (1978) Response properties of dipteran giant visual interneurones involved in control of optomotor behaviour. Nature (Lond.) 271: 358–360.

    Google Scholar 

  • Eckert, H. (1979) Anatomie, Elektrophysiologie und funktionelle Bedeutung bewegungssensitiver Neurone in der Sehbahn von Insekten (Phaenicia). Habilitationsschrift, Universität Bochum.

    Google Scholar 

  • Eckert, H. (1980) Functional properties of the HI-neurone in the third optic ganglion of the blowfly, Phaenicia. J. Comp. Physiol. 135: 29–39.

    Google Scholar 

  • Eckert, H. (1981) The horizontal cells in the lobula plate of the blowfly, Phaenicia sericata. J. Comp. Physiol. 143: 511–526.

    Google Scholar 

  • Eckert, H.& Bishop, L.G. (1978) Anatomical and physiological properties of the vertical cells in the third optic ganglion of Phaenicia sericata ( Diptera, Calliphoridae). J. Comp. Physiol. 126: 57–86.

    Google Scholar 

  • Eckert, H.E.A.& Hamdorf, K. (1981) Action potentials in “non-spiking” visual interneurones. Z. Naturforsch. 36c: 470–474.

    Google Scholar 

  • Eckert, H.& Meiler, K. (1981) Synaptic structures of identified, motion- sensitive interneurones in the brain of the fly, Phaenicia. Verh. Dtsch. Zool. Ges. 1981: 179.

    Google Scholar 

  • Franceschini, N. (1975) Sampling of the visual environment by the compound eye of the fly: Fundamentals and applications. In: Photoreceptor Optics. Ed. A.W. Snyder& R. Menzel. Berlin, Heidelberg, New York, Springer Verlag, p. 98–125.

    Google Scholar 

  • Franceschini, N. (1983) The retinal mosaic of the fly compound eye (This volume).

    Google Scholar 

  • Franceschini, N., Hardie, R, Ribi, W.& Kirschfeld, K. (1981) Sexual dimorphism in a photoreceptor. Nature (Lond.) 291: 241–244.

    Google Scholar 

  • Franceschini, N., Münster, A.& Heurkens, G. (1979) Äquatoriales und binokulares Sehen bei der Fliege Calliphora erythrocephala. Verh. Dtsch. Zool. Ges. 1979: 209.

    Google Scholar 

  • Geiger, G. (1981) Is there a motion independent position computation of an object in the visual system of the housefly? Biol. Cybern. 40: 71–75.

    Google Scholar 

  • Geiger, G& Nässei, D.R. (1981) Visual orientation behaviour of flies after selective laser beam ablation of interneurones. Nature (Lond.) 293: 398–399.

    Google Scholar 

  • Geiger, G. & Nässel, D. (1982) Visual processing of moving single objects and wide-field patterns in flies: Behavioural analysis after laser-surgical removal of interneurons. Biol. Cybern. 44: 141–149.

    Google Scholar 

  • Goodman, C. (1974) Anatomy of locust ocellar interneurons: Constancy and variability. J. Comp. Physiol. 95: 185–201.

    Google Scholar 

  • Götz, K.G. (1968) Flight control in Drosophila by visual perception of motion. Kybernetik 4: 199–208.

    Google Scholar 

  • Götz, K.G. (1982) Bewegungssehen und Flugsteuerung bei der Fliege Drosophila. BIONA-report 2. Ed. W. Nachtigall. Stuttgart, New York, Gustav Fischer, p. 21–33.

    Google Scholar 

  • Götz, K.G.& Buchner, E. (1978) Evidence for one-way movement detection in the visual system of Drosophila. Biol. Cybern. 31: 243–248.

    Google Scholar 

  • Götz, K.G., Hengstenberg, B.& Biesinger, R. (1979) Optomotor control of wing beat and body posture in Drosophila. Biol. Cybern. 35: 101–112.

    Google Scholar 

  • Hardie, R.C. (1979) Electrophysiological analysis of the fly retina. I. Comparative properties of Rl-6 and R7 and 8. J. Comp. Physiol. 129: 19–33.

    Google Scholar 

  • Hardie, R.C., Franceschini, N.& Mein tyre, P.D. (1979) Electrophysiological analysis of the fly retina. II. Spectral and polarization sensitivity in R7 and R8. J. Comp. Physiol. 133: 23–29.

    Google Scholar 

  • Hardie, R.C., Franceschini, N., Ribi, W.& Kirschfeld, K. (1981) Distribution and properties of sex-specific photoreceptors in the fly Musca domestica. J. Comp. Physiol. 145: 139–152.

    Google Scholar 

  • Hausen, K. ( 1976 a) Struktur, Funktion und Konektivität bewegungsempfindlicher Interneuroney im dritten optischen Neuropil der Schmeissfliege Calliphora erythrocephala. Dissertation, Eberhard-Karls-Universität Tübingen.

    Google Scholar 

  • Hausen, K. (1976 b) Functional characterization and anatomical identification of motion sensitive neurons in the lobula plate of the blowfly Calliphora erythrocephala. Z. Naturforsch. 31 c: 629–633.

    Google Scholar 

  • Hausen, K. (1976 c) Funktion, Struktur und Konnektivität bewegungsempfindlicher Interneurone in der Lobula plate von Dipteren. Verh. Dtsch. Zool. Ges. 1976: 254.

    Google Scholar 

  • Hausen, K. (1977) Signal processing in the insect eye. In: Function and Formation of Neural Systems. Ed. G.S. Stent. Berlin, Dahlem Konferenzen, p. 81–110.

    Google Scholar 

  • Hausen, K. (1979) Neural circuitry of visual orientation behavior in flies: structure and function of the lobula complex. Invest. Ophthalmol. Visual Sei. ( Suppl. ) 18: 109.

    Google Scholar 

  • Hausen, K. (1981) Monocular and binocular computation of motion in the lobula plate of the fly. Verh. Dtsch. Zool. Ges. 1981: 49–70.

    Google Scholar 

  • Hausen, K. ( 1982 a) Motion sensitive interneurons in the optomotor system of the fly. I. The horizontal cells: structure and signals. Biol. Cybern. 45: 143–156.

    Google Scholar 

  • Hausen, K. ( 1982 b) Motion sensitive interneurons in the optomotor system of the fly. II. The horizontal cells: Receptive field organization and response characteristics. Biol. Cybern. 46: 67–79.

    Google Scholar 

  • Hausen, K. ( 1983 a) Motion sensitive interneurons in the optomotor system of the fly. I II. The centrifugal horizontal cells. ( In prep. )

    Google Scholar 

  • Hausen, K. (1983 b) Motion sensitive interneurons in the optomotor system of the fly. IV. The Hl, H2 and H3 cells. (In prep.)

    Google Scholar 

  • Hausen, K. ( 1983 c) Motion sensitive interneurons in the optomotor system of the fly. V. Monocular and binocular interactions. ( In prep. )

    Google Scholar 

  • Hausen, K. &: Wehrhahn, C. (1983) Microsurgical lesion of horizontal cells changes optomotor yaw responses in the blowfly Calliphora erythrocephala. Proc. R. Soc. Lond. (In press)

    Google Scholar 

  • Hausen, K.& Wolburg-Buchholz, K. (1980) An improved cobalt-sulfide silver-intensification method for electron microscopy. Brain Res. 187: 462–466.

    Google Scholar 

  • Hausen, K., Wolburg-Buchholz, K.& Ribi, W.A. (1980) The synaptic organization of visual interneurons in the lobula complex of flies. Cell Tissue Res. 208: 371–387.

    Google Scholar 

  • Heide, G. (1975) Properties of a motor output system involved in the optomotor responses in flies. Biol. Cybern. 20: 99–112.

    Google Scholar 

  • Heide, G. (1982) Neural mechanism of flight control in diptera. BIONA-report. (In press)

    Google Scholar 

  • Heisenberg, M.& Buchner, E. (1977) The role of retinula cell types in visual behaviour of Drosophila melanogaster. J. Comp. Physiol. 117: 127–162.

    Google Scholar 

  • Heisenberg, M., Wonneberger, R.& Wolf, R. (1978) Optomotor-blind — a Drosophila mutant of the lobula plate giant neurons. J. Comp. Physiol. 124: 287–296.

    Google Scholar 

  • Hengstenberg, R. (1977) Spike responses of ‘non-spiking’ visual interneurone. Nature (Lond.) 270: 338–340.

    Google Scholar 

  • Hengstenberg, R. (1981) Rotatory visual responses of vertical cells in the lobula plate of Calliphora. Verh. Dtsch. Zool. Ges. 1981: 180.

    Google Scholar 

  • Hengstenberg, R. ( 1982 a) Common visual response properties of giant vertical cells in the lobula plate of the blowfly Calliphora. J. Comp. Physiol. 149: 179–193.

    Google Scholar 

  • Hengstenberg, R. (1982 b) Characteristic visual response properties of particular giant vertical cells in the lobula plate of Calliphora. (In prep.)

    Google Scholar 

  • Hengstenberg, R.& Hengstenberg, B. (1980) Intracellular staining of insect neurons with Procion Yellow. In: Neuroanatomical Techniques. Insect Nervous System. Ed. N.J. Strausfeld& T.A. Miller. New York, Heidelberg, Berlin, Springer-Verlag, p. 307–324.

    Google Scholar 

  • Hengstenberg, R., Hausen, K.& Hengstenberg, B. (1982) The number and structure of giant vertical cells (vs) in the lobula plate of the blowfly Calliphora erythrocephala. J. Comp. Physiol, 149: 163–177.

    Google Scholar 

  • Hubel, D.H.& Wiesel, T.N. (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160: 106–154.

    Google Scholar 

  • Kirschfeld, K. (1967) Die Projektion der optischen Umwelt auf das Raster der Rhabdomere im Komplexauge von Musca. Exp. Brain Res. 3: 248–270.

    Google Scholar 

  • Kirschfeld, K. (1972) The visual system of Musca: Studies on optics, structure and function. In: Information Processing in the Visual Systems of Arthropods. Ed. R. Wehner. Berlin, Heidelberg, New York, Springer Verlag, p. 61–74.

    Google Scholar 

  • Koto, M., Tanouye, M.A., Ferrus, A., Thomas, J.B.& Wyman, R.J. (1981) The morphology of the cervical giant fiber neuron of Drosophila. Brain Res. 221: 213-–217.

    Google Scholar 

  • Laughlin, S. (1981) Neural principles in the peripheral visual system of invertebrates. In: Handbook of Sensory Physiology. Vol. VII/6B. Ed. H. Autrum. Heidelberg, Berlin, New York, Springer Verlag, p. 135–280.

    Google Scholar 

  • Laughlin, S. (1983) The roles of parallel channels in early visual processing by the arthropod compound eye. (This volume)

    Google Scholar 

  • Levine, J.& Tracey, D. (1973) Structure and function of the giant motoneuron of Drosophila melanogaster. J. Comp. Physiol. 87: 213–235.

    Google Scholar 

  • Lilly white, P.G.& Dvorak, D.R. (1981) Responses to single photons in a fly optomotor neurone. Vision Res. 21: 279–290.

    Google Scholar 

  • Mastebroek, H.A.K., Zaagman, W.H. & Lenting, B.P.M. (1980) Movement detection: performance of a wide-field element in the visual system of the blowfly. Vision Res. 20: 467–474.

    Google Scholar 

  • Mastebroek, H.A.K., Zaagman, W.H.& Lenting, B.P.M. (1982) Memorylike effects in fly vision: Spatio-temporal interaction in a wide-field neuron. Biol. Cybern. 43: 147–155.

    Google Scholar 

  • McCann, G.D. (1973) The fundamental mechanism of motion detection in the insect visual system. Kybernetik 12: 64–73.

    Google Scholar 

  • McCann, G.D. & Arnett, D.W. (1972) Spectral and polarization sensitivity of the dipteran visual systems. J. Gen. Physiol. 59: 534–558.

    Google Scholar 

  • Mastebroek, H.A.K., Zaagman, W.H. & Lenting, B.P.M. (1982) Memorylike effects in fly vision: Spatio-temporal interaction in a wide-field neuron. Biol. Cybern. 43: 147–155.

    Google Scholar 

  • McCann, G.D.& Dill, J.C. (1969) Fundamental properties of intensity, form, and motion perception in the visual nervous system of Calliphora phaenicia and Musca domestica. J. Gen. Physiol. 53: 385–413.

    Google Scholar 

  • McCann, G.D.& Foster, S.F. (1971) Binocular interactions of motion detection fibers in the optic lobes of flies. Kybernetik 8: 193–203.

    Google Scholar 

  • Mimura, K. (1971) Movement discrimination by the visual system of flies. Z. vergl. Physiol. 73: 105–138.

    Google Scholar 

  • Mimura, K. (1972) Neural mechanisms, subserving directional selectivity of movement in the optic lobe of the fly. J. Comp. Physiol. 80: 409–437.

    Google Scholar 

  • Murphey, R.K., Matsumoto, S.G.& Levine, R.D. (1977) Does experience play a role in the development of insect neuronal circuitry? In: Identified Neurons and Behavior of Arthropods. Ed. G. Hoyle. New York, London, Plenum Press, p. 495–506.

    Google Scholar 

  • O’Shea, M.& Rowell, C.H.F. (1977) Complex neural integration and identified interneurons in the locust brain. In: Identified Neurons and Behavior. Ed. G. Hoyle. New York, London, Plenum Press, p. 307–328.

    Google Scholar 

  • O’Shea, M., Rowell, C.H.F.& Williams, J.L.D. (1974) The anatomy of a locust visual interneurone: the descending contralateral movement detector. J. Exp. Biol. 60: 1–12.

    Google Scholar 

  • Pick, B. (1976) Visual pattern discrimination as an element of the fly’s orientation behaviour. Biol. Cybern. 23: 171–180.

    Google Scholar 

  • Pierantoni, R. (1976) A look into the cock-pit of the fly. The architecture of the lobular plate. Cell Tissue Res. 171: 101–122.

    Google Scholar 

  • Poggio, T.& Reichardt, W. (1973) Considerations on models of movement detection. Kybernetik 13: 223–227.

    Google Scholar 

  • Poggio, T.& Reichardt, W. (1976) Visual control of orientation behaviour in the fly. Part II: Toward the underlying neural interactions. Quart. Rev. Biophys. 9: 377–438.

    Google Scholar 

  • Poggio, T., Reichardt, W.& Hausen, K. (1981) A neuronal circuitry for relative movement discrimination by the visual system of the fly. Naturwiss. 68: 443–446.

    Google Scholar 

  • Power, M. (1948) The thoracico-abdominal nervous system of an adult insect, Drosophila melanogaster. J. Comp. Neurol. 88: 347–409.

    Google Scholar 

  • Reichardt, W. (1973) Musterinduzierte Flugorientierung. Verhaltens-Versuche an der Fliege Musca domestica. Naturwiss. 60: 122–138.

    Google Scholar 

  • Reichardt, W.& Poggio, T. (1976) Visual control of orientation behaviour in the fly. Part I. A quantitative analysis. Quart. Rev. Biophys. 9: 311–375.

    Google Scholar 

  • Reichardt, W.& Poggio, T. (1979) Figure-ground discrimination by relative movement in the visual system of the fly. Part I: Experimental results. Biol. Cybern. 35: 81–100.

    Google Scholar 

  • Reichardt, W., Poggio, T.& Hausen, K. (1983) Figure-ground discrimination by relative movement in the visual system of the fly. Part II: Towards the neural circuitry. Biol. Cybern. 46 (suppl.): 1–30.

    Google Scholar 

  • Riehle, A. & Franceschini, N. (1982) Response of a movement-sensitive neuron to microstimulation of two photoreceptor cells. (In prep.)

    Google Scholar 

  • Soohoo, S.L.& Bishop, L.G. (1980) Intensity and motion responses of giant vertical neurons of the fly eye. J. Neurobiol. 11: 159–177.

    Google Scholar 

  • Spüler, M. (1980) Erregende und hemmende Wirkungen visueller Bewegungsreize auf das Flugsteuersystem von Fliegen-Elektro-physiologische und verhaltensphysiologische Untersuchungen an Musca und Calliphora. Dissertation, Universität Düsseldorf.

    Google Scholar 

  • Srinivasan, M.V.& Dvorak, D.R. (1980) Spatial processing of visual information in the movement-detecting pathway of the fly. J. Comp. Physiol. 140: 1–23.

    Google Scholar 

  • Stavenga, D.G. (1975) The neural superposition eye and its optical demands. J. Comp. Physiol. 102: 297–304.

    Google Scholar 

  • Strausfeld, N.J. ( 1976 a) Atlas of an Insect Brain. Berlin, Heidelberg, New York, Springer Verlag.

    Google Scholar 

  • Strausfeld, N.J. ( 1976 b) Mosaic organizations, layers, and visual pathways in the insect brain. In: Neural Principles in Vision. Ed. F. Zettler& R. Weiler. Berlin, Heidelberg, New York, Springer Verlag, p. 245–279.

    Google Scholar 

  • Strausfeld, N.J. (1980) Male and female visual neurones in dipteran insects. Nature (Lond.) 283: 381–383.

    Google Scholar 

  • Strausfeld, N.J. (1983) Functional neuroanatomy of the blowfly’s visual system. (This volume)

    Google Scholar 

  • Strausfeld, N.J.& Nässel, D. (1981) Neuroarchitectures serving compound eyes of crustacea and insects. In: Handbook of Sensory Physiology. Ed. H. Autrum. Vol. VII/6B. Berlin, Heidelberg, New York, Springer Verlag, p. 1–138.

    Google Scholar 

  • Strausfeld, N.J.& Obermayer, M.L. (1976) Resolution of intraneuronal and transsynaptic migration of cobalt in the insect visual and nervous system. J. Comp. Physiol. 110: 1–12.

    Google Scholar 

  • Tanouye, M.& Wyman, R.J. (1980) Motor outputs of giant nerve fibre in Drosophila. J. Neurophysiol. 44: 405–421.

    Google Scholar 

  • Wehrhahn, C. (1978) Flight torque and lift responses of the housefly (Musca domestica) to a single stripe moving in different parts of the visual field. Biol. Cybern. 29: 237–247.

    Google Scholar 

  • Wehrhahn, C. (1979) Sex-specific differences in the chasing behaviour of houseflies (Musca). Biol. Cybern. 32: 239–241.

    Google Scholar 

  • Wehrhahn, C.& Hausen, K. (1980) How is tracking and fixation accomplished in the nervous system of the fly? Biol. Cybern. 38: 179–186.

    Google Scholar 

  • Wehrhahn, C.& Reichardt, W. (1975) Visually induced height orientation of the fly Musca domestica. Biol. Cybern. 20: 37–50.

    Google Scholar 

  • Wiesel, T.N.& Hubel, D.H. (1963) Effects of visual deprivation of morphology and physiology of cells in the cat’s lateral geniculate body. J. Neurophysiol. 26: 978–993.

    Google Scholar 

  • Zaagman, W.H., Mastebroek, H.A.K., Buyse, T.& Kuiper, J.W. (1977) Receptive field characteristics of a directionally selective movement detector in the visual system of the blowfly. J. Comp. Physiol. 116: 39–50.

    Google Scholar 

  • Zaagman, W.H., Mastebroek, H.A.K.& Kuiper, J.W. (1978) On the correlation model: Performance of a movement detecting neural element in the fly visual system. Biol. Cybern. 31: 163–168.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag US

About this chapter

Cite this chapter

Hausen, K. (1984). The Lobula-Complex of the Fly: Structure, Function and Significance in Visual Behaviour. In: Ali, M.A. (eds) Photoreception and Vision in Invertebrates. NATO ASI Series, vol 74. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2743-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2743-1_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9699-7

  • Online ISBN: 978-1-4613-2743-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics