Advertisement

Functional Neuroanatomy of the Blowfly’s Visual System

  • N. J. Strausfeld
Part of the NATO ASI Series book series (NSSA, volume 74)

Abstract

Outputs from the optic lobes arise mainly in the lobula (Lo) and lobula plate (LP), two neuropils each with distinct architectures. Columnar neurons, comprising the relatively large and multilayered Lo, receive the majority of axons originating in the peripheral medulla (Me). In contrast, the LP is a thin tectum of neuropil characterized by large field tangential cells thought to be involved in visual stabilization of flight. In common with other areas, relays from the retina into the LP are retinotopically organized. Neuroanatomical studies show that pathways destined for the Lo and LP segregate peripherally at the level of synapses between receptors and interneurons. The final input to the LP is carried by four identical neurons (the T4-pair and T5-pair), each quartet representing a point in the visual field which overlaps six surrounding points. The terminals of the quartet define two functional layers in the LP neuropil (horizontality and verticality). T-cell endings are presynaptic to horizontal (HS) and vertical (VS) motion sensitive neurons. Their synaptology suggests that computation of direction (as opposed to motion) is performed in the lobula plate. HS and VS cells input to separate channels leading out of the brain (sets of descending neurons, the DNHS and DNVS). The DNHS receive additional inputs from the antennae whereas the DNVS receive additional inputs from the ocelli. It is proposed that the DNVS set carries information about pitch, yaw and roll whereas the DNHS set carries information about angular acceleration and apparent speed of the visual surround.

Keywords

Horizontal Cell Optic Lobe Visual Unit Vertical Grating Vertical Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnett, D.W. (1972) Spatial and temporal integration properties of units in the first optic ganglion of dipterans. J. Neurophysiol. 35: 429–444.Google Scholar
  2. Barlow, H.B. & Levick, W.R. (1965) The mechanism of directionally sensitive units in rabbit’s retina. J. Physiol. 178: 477–504.Google Scholar
  3. Beersma, D.G.M., Stavenga, D.G. & Kuiper, J.W. (1975) Organization of visual axes in the compound eye of the fly Musca domestica L. and behavioural consequences. J. Comp. Physiol. 102: 305–320.CrossRefGoogle Scholar
  4. Boschek, C.B. (1971) On the fine structure of the peripheral retina and lamina ganglionaris of the fly Musca domestica. Z. Zellforsch. 118: 369–409.CrossRefGoogle Scholar
  5. Braitenberg, V. (1967) Patterns of projections in the visual system of the fly. I. Retina-lamina projections. Exp. Brain Res. 3: 271–298.CrossRefGoogle Scholar
  6. Braitenberg, V. (1972) Periodic structures and structural gradients in the visual ganglia of the fly. In: Information Processing in the Visual System of Arthropods. Ed. R. Wehner. Berlin, Heidelberg, New York, Springer, p. 1–15.Google Scholar
  7. Braitenberg, V. & Debbage, P. (1974) A regular net of reciprocal synapses in the visual system of the fly Musca domestica. J. Comp. Physiol. 90: 25–31.CrossRefGoogle Scholar
  8. Buchner, E. (1976) Elementary movement detectors in an insect visual system. Biol. Cybern. 24: 85–101.CrossRefGoogle Scholar
  9. Buchner, E. & Buchner, S. (1983) Neuroanatomical mapping of visually induced nervous activity in insects by 3H-deoxyglucose. (This volume)Google Scholar
  10. Buchner, R., Buchner, S. & Hengstenberg, R. (1979) 2-deoxy-D-glucose maps movement-specific nervous activity in the second visual ganglion of Deosophila. Science 205: 687–688.CrossRefGoogle Scholar
  11. Cajal, S.R. & Sanchez, D. (1975) Contribution al conocimiento de los céntros nerviosos de los inséctos. Parte I, retina y centros opticos. Trab. Lab. Invest. Biol. Univ. Madrid 13: 1–168.Google Scholar
  12. Campos-Ortega, J.A. (1982) Development of the nervous system. In: Handbook of Drosophila Development. Ed. R. Ransom. Amsterdan, New York, Oxford, Elsevier Biomedical.Google Scholar
  13. Campos-Ortega, J.A. & Strausfeld, N.J. ( 1972 a) Columns and layers in the second synaptic region of the fly’s visual system: the case for two superimposed neuronal architectures. In: Information Processing in the Visual System of Arthropods. Ed. R. Wehner. Berlin, Heidelberg, New York, Springer.Google Scholar
  14. Campos-Ortega J.A. & Strausfeld, N.J. ( 1972 b) The columnar organization of the second synaptic region of the visual system of Musca domestica L. I. Receptor terminals in the medulla. Z. Zellforsch. 124: 561–585.CrossRefGoogle Scholar
  15. Campos-Ortega, J.A. & Strausfeld, N.J. (1973) Synaptic connections of intrinsic cells and basket arborizations in the external plexiform layer of the fly’s eye. Brain Res. 59: 119–136.CrossRefGoogle Scholar
  16. Dvorak, D.R., Bishop, L.G. & Eckert, H.E. (1975) On the identification of movement detectors in the fly optic lobe. J. Comp. Physiol. 100: 5–23.CrossRefGoogle Scholar
  17. Eckert, H. (1981) The horizontal cells in the lobula plate of the blowfly, Phaenicia sericata. J. Comp. Physiol. 143: 511–526.CrossRefGoogle Scholar
  18. Eckert, H. (1982) The vertical-horizontal neurone (VH) in the lobula plate of the blowfly, Phaenicia. J. Comp. Physiol. 149: 195–205.CrossRefGoogle Scholar
  19. Eckert, H. & Bishop, L.G. (1978) Anatomical and physiological properties of the vertical cells in the third optic ganglion of Phaenicia sericata ( Diptera, Calliphoridae). J. Comp. Physiol. 126: 57–86.CrossRefGoogle Scholar
  20. Fischbach, K.F. (1983) Neural cell types surviving congential sensory deprivation in the optic lobes of Drosophila melanogaster. Dev. Biol. 95: 1–18.CrossRefGoogle Scholar
  21. Franceschini, N. (1975) Sampling of the visual environment by the compound eye of the fly: fundamentals and applications. In: Photoreceptor Optics. Ed. A.W. Snyder & R. Menzel. Berlin, Heidelberg, New York, Springer, p. 97–125.Google Scholar
  22. Franceschini, N., Hardie, R., Ribi, R. & Kirschfeld, K. (1981) Sexual dimorphism in a photoreceptor. Nature (Lond.) 291: 241–244.CrossRefGoogle Scholar
  23. Gewecke, M. (1974) The antennae of insects as air current sense organs and their relationships to the control of flight. In: Experimental Analysis of Insect Behaviour. Ed. L. Barton-Browne. Berlin, Heidelberg, New York, Springer, p. 100–113.CrossRefGoogle Scholar
  24. Hausen, K. (1981) Monocular and binocular computation of motion in the lobula plate of the fly. Verh. Dtsch. Zool. Ges. 1981: 47–70Google Scholar
  25. Hausen, K. ( 1982 a) Motion sensitive interneurons in the optomotor system of the fly. I. The horizontal cells: structure and signals. Biol. Cybern. 45: 143–156.CrossRefGoogle Scholar
  26. Hausen, K. ( 1982 b) Motion sensitive interneurons in the optomotor system of the fly. II. The horizontal cells: receptive field organization and response characteristics. Biol. Cybern. 46: 67–79.CrossRefGoogle Scholar
  27. Hausen, K. & Strausfeld, N.J. (1980) Sexually dimorphic interneuron arrangements in the fly visual system. Proc. R. Soc. Lond. 208B: 57–71.CrossRefGoogle Scholar
  28. Hengstenberg, R. (1977) Spike responses of “non-spiking” visual interneurones. Nature (Lond.) 270: 338–340.CrossRefGoogle Scholar
  29. Hengstenberg, R. (1982) Common visual response properties of giant vertical cells in the lobula plate of the blowfly Calliphora. J. Comp. Physiol. 149: 179–193.CrossRefGoogle Scholar
  30. Hengstenberg, R., Bülthoff, H. & Hengstenberg, B. (1983) Three-dimensional reconstruction and stereoscopic display of neurons in the fly visual system. In: Functional Neuroanatomy. Ed. N.J. Strausfeld. Springers series in Experimental Entomology. Heidelberg, Berlin, New York, Springer. (In press)Google Scholar
  31. Hengstenberg, R., Hausen, K. & Hengstenberg, B. (1982) The number and structure of giant vertical cells (VS) in the lobula plate of the blowfly Calliphora erythrocephala. J. Comp. Physiol. 149: 163–178.CrossRefGoogle Scholar
  32. Hubel, D.H. & Wiesel, T.N. (1974) Sequence, regularity and geometry of orientation columns in the monkey striate cortex. J. Comp. Neurol. 158: 267–294.CrossRefGoogle Scholar
  33. Järvilehto, M & Zettler, F. (1973) Electrophysiological-histological studies on some functional properties of visual cells and second order neurons of an insect retina Z. Zellforsch. 136: 291–306.CrossRefGoogle Scholar
  34. Kirschfeld, K. (1967) Die Projektion der optischen Umwelt auf das Raster der Rhabdomere im Komplexauge von Musca. Exp. Brain Res. 2: 248–270.Google Scholar
  35. Laughlin, S.B. (1973) Neural integration in the first optic neuropil of dragonflies. I. Signal amplification in dark-adapted second-order neurons. J. Comp. Physiol. 84: 335–355.CrossRefGoogle Scholar
  36. Laughlin, S.B. (1974) Neural integration in the first optic neuropile of dragonflies. III. The transfer of angular information. J. Comp. Physiol. 99: 377–396.Google Scholar
  37. Laughlin, S.B. (1975) Receptor and interneurone light adaptation in the dragonfly visual system. Z. Naturf. 30c: 306–308.Google Scholar
  38. Laughlin, S.B. (1976) Neural integration in the first optic neuropile of dragonflies. IV. Interneurone spectral sensitivity and contrast coding. J. Comp. Physiol. 122: 199–211.CrossRefGoogle Scholar
  39. Laughlin, S.B. (1981) Neural principles in the visual system. In: Handbook of Sensory Physiology. Vol. VII/6B. Ed. H. Autrum. Berlin, Heidelberg, New York, Springer.Google Scholar
  40. Laughlin, S.B. & Hardie, R.C. (1978) Common strategies for light adaptation in the peripheral visual system of fly and dragonfly. J. Comp. Physiol. 128: 319–340.CrossRefGoogle Scholar
  41. Mclntyre, P. & Snyder, A.W. (1978) Light propagation in twisted anisotropic media: application to photoreceptors. J. Opt. Soc. Am. 68: 149–157.CrossRefGoogle Scholar
  42. Meinertzhagen, I.A. (1973) Development of the compound eye and optic lobes of insects. In: Developmental Neurobiology of Arthropods. Ed. D. Young. Cambridge, London, New York, Cambridge University Press, p. 51–104.Google Scholar
  43. Meinertzhagen, I.A. (1976) The organization of perpendicular fibre pathways in the insect optic lobe. Phil. Trans. R. Soc. Lond. 274B: 555–596.Google Scholar
  44. Melamed, J. & Trujillo-Cenoz, O. (1968) The fine structure of the central cells in the ommatidia of dipterans. J. Ultrastruct. Res. 21: 313–334.CrossRefGoogle Scholar
  45. Pierantoni, R. (1976) A look into the cock-pit of the fly: the architecture of the lobular plate. Cell Tissue Res. 171: 101–122.CrossRefGoogle Scholar
  46. Ready, D.F., Hanson, T.E. & Benzer, S. (1976) Development of the Drosophila retina. A neurocrystalline lattice. Dev. Biol. 53: 217–240.CrossRefGoogle Scholar
  47. Ribi, W.A. (1975) The neurons of the first optic ganglion of the bee Apis mellifera. Adv. Anat. Embryol. Cell Biol. 50: 1–43.Google Scholar
  48. Rowell, C.H.F., O’Shea, M. & Williams, J.L.D. (1977) The neuronal basis of a sensory analyser, the acridid moment detector system. IV. The preference for small field stimuli. J. Exp. Biol. 68: 157–185.Google Scholar
  49. Scholes, J. (1969) The electrical responses of the retina receptors and the lamina in the visual system of the fly Musca. Kybernetik 6: 149–162.CrossRefGoogle Scholar
  50. Shaw,S.R. (1975) Retinal resistance barriers and electrical lateral inhibition. Nature (Lond.) 255: 480–482.CrossRefGoogle Scholar
  51. Shaw,S.R. (1981) Anatomy and physiology of identified non-spiking cells in the photoreceptor-lamina complex of the compound eye of insects, especially diptera. In: Neurons without Impulses. Ed. A. Roberts & B.M.H. Bush. Cambridge, London, New York, Cambridge University Press.Google Scholar
  52. Srinivasan, M.V. & Bernard, G.D. (1975) The effect of motion of visual acuity of the compound eye: a theoretical analysis. Vision Res. 15: 515–525.Google Scholar
  53. Stavenga, D.G. (1979) Pseudopupils of compound eyes. In: Handbook of Sensory Physiology. Vol. VII/6A. Ed. H. Autrum. Heidelberg, Berlin, New York, Springer, p. 357–439.Google Scholar
  54. Strausfeld, N.J. (1970) Golgi studies on insects. Part II. The optic lobes of diptera. Phil. Trans. R. Soc. Lond. 258B: 175–223.Google Scholar
  55. Strausfeld, N.J. (1971) The organization of the insect visual system (light microscopy). II. The projection of fibres across the first optic chiasma. Z. Zellforsch. 121: 442–454.CrossRefGoogle Scholar
  56. Strausfeld, N.J. ( 1976 a) Mosaic organizations, layers, and visual pathways in the insect brain. In: Neural Principles in Vision. Ed. F. Zettler & R. Weiler. Berlin, Heidelberg, New York, Springer.Google Scholar
  57. Strausfeld, N.J. ( 1976 b) Atlas of an Insect Brain. Berlin, Heidelberg, New York, Springer.CrossRefGoogle Scholar
  58. Strausfeld, N.J. (1979) The representation of a receptor map within retinotopic neuropil of the fly. Verh. Dtsch. Zool. Ges. 1979: 167–177.Google Scholar
  59. Strausfeld, N.J. (1980) Male and female neurons in dipterous insects. Nature (Lond.) 233: 381–383.CrossRefGoogle Scholar
  60. Strausfeld, N.J. & Bacon, J.P. (1983) Multimodal convergence in the central nervous system of insects. In: Multimodal Convergence in Sensory Systems. Fortschr. Zool. 28. Ed. E. Horn. Stuttgart, New York, Gustav Fischer.Google Scholar
  61. Strausfeld, N.J. & Bassemir, U.K. (1983) Cobalt-coupled neurons of a giant fiber system in Diptera. J. Neurocytol. (In press)Google Scholar
  62. Strausfeld, N.J., Bassemir, U.K., Singh, R.N. & Bacon, J.P. (1983) Organizational principles of outputs from dipteran brains. J. Insect Physiol. (In press)Google Scholar
  63. Strausfeld, N.J. & Blest, A.D. (1970) Golgi studies on insects. Part I. The optic lobes of Lepidoptera. Phil. Trans. R. Soc. Lond. 258B: 81–134.Google Scholar
  64. Strausfeld, N.J. & Braitenberg, V. (1970) The compound eye of the fly (Musca domestica): connections between the cartridges of the lamina ganglionaris. Z. vergl. Physiol. 70: 95–104.CrossRefGoogle Scholar
  65. Strausfeld, N.J. & Campos-Ortega, J.A. (1977) Vision in insects: pathways possibly underlying neural adaptation and lateral inhibition. Science 195: 894–897.CrossRefGoogle Scholar
  66. Strausfeld, N.J. & Hausen, K. (1977) The resolution of neuronal assemblies after cobalt injection into neuropil. Proc. R. Soc. Lond. 199B: 563–476.Google Scholar
  67. Strausfeld, N.J. & Nässel, D.R. (1981) Neuroarchitecture of brain regions that subserve the compound eyes of crustacea and insects. In: Handbook of Sensory Physiology. Vol. VII/6B. Ed. H. Autrum. Berlin, Heidelberg, New York, Springer.Google Scholar
  68. Taylor, C.P. (1981) Contribution of compound eyes and ocelli to steering of locusts in flight. 1. Behavioural analysis. J. Exp. Biol. 93: 1–18.Google Scholar
  69. Torre, V. & Poggio, T. (1978) A synaptic mechanism possibly underlying directional selectivity to motion. Proc. R. Soc. Lond. 202B: 409–416.CrossRefGoogle Scholar
  70. Trujillo-Cenoz, O. (1966) Some aspects of the structural organization of the intermediate retina of dipterans. J. Ultrastruct. Res. 13: 1–33.CrossRefGoogle Scholar
  71. Trujillo-Cenoz, O. & Melamed, J. (1966) Electron microscopical observations on the peripheral and intermediate retina of dipterans. In: The Functional Organization of the Compound Eye. Ed. C.G. Bernhard. London, Pergamon.Google Scholar
  72. Vigier, P. ( 1907 a) Méchanisme de la synthèse des impressions lumineuses recueillies par les yeux composés des Diptères. C.R. Acad. Sci. ( Paris ) 63: 122–124.Google Scholar
  73. Vigier, P. ( 1907 b) Sur les terminations photoréceptrices dans les yeux composés des Muscides. C.R. Acad. Sci. ( Paris ) 63: 532–536.Google Scholar
  74. Vigier, P. ( 1907 c) Sur la réception de l’excitant lumineux dans les yeux composés des insectes, en particulier chez les Muscides. C.R. Acad. Sci. ( Paris ) 63: 633–636.Google Scholar
  75. Vigier, P. (1908) Sur l’existence réelle et le rôle des appendices piriform des neurones. La neurone périoptique des Diptères. C.R. Soc. Biol. ( Paris ) 64: 959–961.Google Scholar
  76. Wilson, M. (1978) Functional organization of locust ocelli. J. Comp. Physiol. 124: 297–316.CrossRefGoogle Scholar
  77. Wunderer, H. & Smola, U. ( 1982 b) Fine structure of ommatidia at the dorsal eye margin of Calliphora erythrocephala Meigen (Diptera: Calliphoridae): an eye region specialized for the detection of polarized light. Int. J. Insect Morphol. Embryol. 11: 25–38.CrossRefGoogle Scholar
  78. Zettler, F. & Järvilheto, M. (1971) Decrement-free conduction of graded potentials along the axon of a monopolar neuron. Z. vergl. Physiol. 75: 402–421.CrossRefGoogle Scholar
  79. Zettler, F. & Järvilheto, M. (1972) Lateral inhibition in an insect eye. Z. vergl. Physiol. 76: 233–244.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • N. J. Strausfeld
    • 1
  1. 1.European Molecular Biology LaboratoryHeidelbergWest Germany

Personalised recommendations